/// <summary> /// Make a prediction using the standard interface /// </summary> /// <param name="input">an instance of ComputerInput to predict from</param> /// <param name="error">If an error occurs, upon return contains an NSError object that describes the problem.</param> public ComputerOutput GetPrediction(ComputerInput input, out NSError error) { var prediction = model.GetPrediction(input, out error); if (prediction == null) { return(null); } var lossValue = prediction.GetFeatureValue("loss").DictionaryValue; var classLabelValue = prediction.GetFeatureValue("classLabel").StringValue; return(new ComputerOutput(lossValue, classLabelValue)); }
/// <summary> /// Make a prediction using the convenience interface /// </summary> /// <param name="data"> as color (kCVPixelFormatType_32BGRA) image buffer, 227 pizels wide by 227 pixels high</param> /// <param name="error">If an error occurs, upon return contains an NSError object that describes the problem.</param> public ComputerOutput GetPrediction(CVPixelBuffer data, out NSError error) { var input = new ComputerInput(data); return(GetPrediction(input, out error)); }