コード例 #1
0
        public void Build(weka.core.Instances instances)
        {
            WekaUtils.DebugAssert(instances.numClasses() == 3, "instance's numClasses should be 3.");
            for (int i = 0; i < m_counts.Length; i++)
            {
                m_counts[i] = 0;
            }

            double c = m_tp / m_sl;

            foreach (weka.core.Instance instance in instances)
            {
                int v = (int)instance.classValue();
                if (v == 2)
                {
                    m_counts[2] += c;
                }
                else if (v == 0)
                {
                    m_counts[0]++;
                }
                else
                {
                    m_counts[1]++;
                }
            }
        }
コード例 #2
0
ファイル: RandomClassifier.cs プロジェクト: wushian/MLEA
        ///            
        ///             <summary> * Generates the classifier.
        ///             * </summary>
        ///             * <param name="instances"> set of instances serving as training data  </param>
        ///             * <exception cref="Exception"> if the classifier has not been generated successfully </exception>
        ///             
        public override void buildClassifier(Instances instances)
        {
            // can classifier handle the data?
            getCapabilities().testWithFail(instances);

            // remove instances with missing class
            instances = new Instances(instances);
            instances.deleteWithMissingClass();

            double sumOfWeights = 0;

            WekaUtils.DebugAssert(instances.numClasses() == 3, "instance's numClasses should be 3.");
            m_counts = new double[instances.numClasses()];
            m_normalCounts = new double[instances.numClasses()];
            for (int i = 0; i < m_counts.Length; i++)
            {
                m_counts[i] = 0;
                m_normalCounts[i] = 0;
            }

            double c = m_tp / m_sl;
            foreach (Instance instance in instances)
            {
                int v = (int)instance.classValue();
                if (v == 2)
                {
                    m_counts[v] += instance.weight() * c;
                    sumOfWeights += instance.weight() * c;
                }
                else
                {
                    m_counts[v] += instance.weight();
                    sumOfWeights += instance.weight();
                }
            }

            double start = 0;
            for (int i = 0; i < m_counts.Length; ++i)
            {
                m_normalCounts[i] = (double)m_counts[i] / sumOfWeights + start;
                start = m_normalCounts[i];
            }
        }
コード例 #3
0
ファイル: ProbClassifier.cs プロジェクト: wushian/MLEA
        ///            
        ///             <summary> * Generates the classifier.
        ///             * </summary>
        ///             * <param name="instances"> set of instances serving as training data  </param>
        ///             * <exception cref="Exception"> if the classifier has not been generated successfully </exception>
        ///             
        public override void buildClassifier(Instances instances)
        {
            // can classifier handle the data?
            getCapabilities().testWithFail(instances);

            // remove instances with missing class
            var trainInstances = new Instances(instances);
            trainInstances.deleteWithMissingClass();

            WekaUtils.DebugAssert(instances.numClasses() == 3, "instance's numClasses should be 3.");
            m_counts = new double[instances.numClasses()];
            for (int i = 0; i < m_counts.Length; i++)
            {
                m_counts[i] = 0;
            }

            //double c = m_tp / m_sl;
            foreach (Instance instance in instances)
            {
                int v = (int)instance.classValue();
                m_counts[v] += 1;
                sumOfWeights += 1;
            }
        }
コード例 #4
0
ファイル: CostMatrix.cs プロジェクト: intille/mitessoftware
		/// <summary> Applies the cost matrix to a set of instances. If a random number generator is 
		/// supplied the instances will be resampled, otherwise they will be rewighted. 
		/// Adapted from code once sitting in Instances.java
		/// 
		/// </summary>
		/// <param name="data">the instances to reweight.
		/// </param>
		/// <param name="random">a random number generator for resampling, if null then instances are
		/// rewighted.
		/// </param>
		/// <returns> a new dataset reflecting the cost of misclassification.
		/// </returns>
		/// <exception cref="Exception">if the data has no class or the matrix in inappropriate.
		/// </exception>
		public virtual Instances applyCostMatrix(Instances data, System.Random random)
		{
			
			double sumOfWeightFactors = 0, sumOfMissClassWeights, sumOfWeights;
			double[] weightOfInstancesInClass, weightFactor, weightOfInstances;
			Instances newData;
			
			if (data.classIndex() < 0)
			{
				throw new System.Exception("Class index is not set!");
			}
			
			if (size() != data.numClasses())
			{
				throw new System.Exception("Misclassification cost matrix has " + "wrong format!");
			}
			
			weightFactor = new double[data.numClasses()];
			weightOfInstancesInClass = new double[data.numClasses()];
			for (int j = 0; j < data.numInstances(); j++)
			{
				//UPGRADE_WARNING: Data types in Visual C# might be different.  Verify the accuracy of narrowing conversions. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1042'"
				weightOfInstancesInClass[(int) data.instance(j).classValue()] += data.instance(j).weight();
			}
			sumOfWeights = Utils.sum(weightOfInstancesInClass);
			
			// normalize the matrix if not already
			for (int i = 0; i < size(); i++)
				if (!Utils.eq(getXmlElement(i, i), 0))
				{
					CostMatrix normMatrix = new CostMatrix(this);
					normMatrix.normalize();
					return normMatrix.applyCostMatrix(data, random);
				}
			
			for (int i = 0; i < data.numClasses(); i++)
			{
				
				// Using Kai Ming Ting's formula for deriving weights for 
				// the classes and Breiman's heuristic for multiclass 
				// problems.
				sumOfMissClassWeights = 0;
				for (int j = 0; j < data.numClasses(); j++)
				{
					if (Utils.sm(getXmlElement(i, j), 0))
					{
						throw new System.Exception("Neg. weights in misclassification " + "cost matrix!");
					}
					sumOfMissClassWeights += getXmlElement(i, j);
				}
				weightFactor[i] = sumOfMissClassWeights * sumOfWeights;
				sumOfWeightFactors += sumOfMissClassWeights * weightOfInstancesInClass[i];
			}
			for (int i = 0; i < data.numClasses(); i++)
			{
				weightFactor[i] /= sumOfWeightFactors;
			}
			
			// Store new weights
			weightOfInstances = new double[data.numInstances()];
			for (int i = 0; i < data.numInstances(); i++)
			{
				//UPGRADE_WARNING: Data types in Visual C# might be different.  Verify the accuracy of narrowing conversions. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1042'"
				weightOfInstances[i] = data.instance(i).weight() * weightFactor[(int) data.instance(i).classValue()];
			}
			
			// Change instances weight or do resampling
			if (random != null)
			{
				return data.resampleWithWeights(random, weightOfInstances);
			}
			else
			{
				Instances instances = new Instances(data);
				for (int i = 0; i < data.numInstances(); i++)
				{
					instances.instance(i).Weight = weightOfInstances[i];
				}
				return instances;
			}
		}