コード例 #1
0
ファイル: Neuron.cs プロジェクト: karlyung/NeuralNetwork
        //Back Propagate for Hidden Neuron
        public int BackPropag(main.Network net, int mPos, double learnRate)
        {
            this.dE_over_dOut = 0;

            if (this.actFunc == actFuncType.logistic)
            {
                for (int i = 0; i < net.numNeuronsEachLayer[layer + 1]; i++)
                {
                    //if (net[i, this.layer + 1].weights[mPos] != 0)
                    //{
                    Neuron outNeuron = net.nNarray[i, this.layer + 1];
                    this.dE_over_dOut += outNeuron.dE_over_dOut * outNeuron.dOut_over_dNet * outNeuron.weights[mPos];
                    //}
                }

                this.dOut_over_dNet = this.postActOutput * (1 - this.postActOutput);
                for (int i = 0; i < this.inputs.Count; i++)
                {
                    this.dNet_over_dW.Add(this.inputs[i]);

                    this.dE_over_dW.Add(this.dE_over_dOut * this.dOut_over_dNet * this.dNet_over_dW[i]);

                    this.newWeights.Add(this.weights[i] - learnRate * this.dE_over_dW[i]);
                }

                return(0);
            }
            else
            {
                //return -1;
                throw new Exception("Activation function not ready for back propagation.");
            }
        }
コード例 #2
0
ファイル: Neuron.cs プロジェクト: karlyung/NeuralNetwork
        //Minimal Hidden or Output Neuron Initializing Constructor
        public Neuron(main.Network inNet, List <List <int> > inInputNs, int inLayer)
        {
            this.inputNeurons = inInputNs;
            this.layer        = inLayer;

            this.weights = new List <double>();
            for (int i = 0; i < inNet.numNeuronsEachLayer[inLayer - 1]; i++)
            {
                if (inNet.nNarray[i, inLayer - 1] != null)
                {
                    this.weights.Add(DEFAULT_WEIGHT);
                }
                else
                {
                    this.weights.Add(0f);
                }
            }
        }