コード例 #1
0
        const double Epsilon = 0.01; // Epsilon is a value near to 0

        static void Main(string[] args)
        {
            //Parameters
            int    inputCount    = 2;
            int    hiddenCount   = 5;
            int    outputCount   = 4;
            int    examplesCount = 4;
            double learningRate  = 0.1;
            Random r             = new Random();

            //Training data           //INPUT
            Matrix x = new double[, ] {
                { 0, 0 },
                { 0, 1 },
                { 1, 0 },
                { 1, 1 }
            };
            //DESIRED OUTPUT
            //XNOR AND OR XOR
            Matrix y = new double[, ] {
                { 1, 0, 0, 0 },
                { 0, 0, 1, 1 },
                { 0, 1, 1, 1 },
                { 1, 1, 1, 0 }
            };

            //Weight init
            Matrix w1 = (Matrix.Random(inputCount + 1, hiddenCount, r) - 0.5) * 2.0;
            Matrix w2 = (Matrix.Random(hiddenCount + 1, outputCount, r) - 0.5) * 2.0;

            // TO USE RELU
            // 0. Change all sigmoid function, for relu function
            // 1. a3 must have no Nonlinear function Matrix a3 = z3;
            // 2. because of that Delta3 has not derivated Matrix Delta3 = a3Error * 1;
            // 3. The learning rate must be smaller, like 0.001

            for (int l = 0; l < 5001; l++) //epoch
            {
                //Forward pass
                Matrix z1 = x.AddColumn(Matrix.Ones(examplesCount, 1));
                Matrix a1 = z1;          //(Examples, input + 1)
                Matrix z2 = (a1 * w1).AddColumn(Matrix.Ones(examplesCount, 1));
                Matrix a2 = sigmoid(z2); //(examples, hidden neurons + 1) // APPLY NON LINEAR
                Matrix z3 = a2 * w2;
                Matrix a3 = sigmoid(z3); //(examples, output)

                //Bacpropagation
                Matrix a3Error = a3 - y; //(examples, output) //LOSS
                Matrix Delta3  = a3Error * sigmoid(z3, true);

                Matrix a2Error = Delta3 * w2.T;
                Matrix Delta2  = a2Error * sigmoid(z2, true);
                Delta2 = Delta2.Slice(0, 1, Delta2.x, Delta2.y); //Slicing Extra delta (from biass neuron)

                w2 -= (a2.T * Delta3) * learningRate;
                w1 -= (a1.T * Delta2) * learningRate;

                double loss = a3Error.abs.average * examplesCount;
                Console.WriteLine("Loss: " + loss);

                if (l % 1000 == 0)
                {
                    Console.WriteLine("---------" + l + "----------------------------------------------------");
                    Console.WriteLine("X: " + x.size.ToString());
                    Console.WriteLine(x.ToString());

                    Console.WriteLine("Prediction: " + a3.size.ToString());
                    Console.WriteLine(a3);
                }
            }
            Console.ReadKey();
        }
コード例 #2
0
        static void Main(string[] args)
        {
            int    entrada    = 2;
            int    pesos      = 5;
            int    salida     = 4;
            int    umbral     = 4;
            double recalcular = 0.1;
            Random r          = new Random();


            Matrix x = new double[, ] {
                { 0, 0 },
                { 0, 1 },
                { 1, 0 },
                { 1, 1 }
            };

            Matrix y = new double[, ] {
                { 1, 0, 0, 0 },
                { 0, 0, 1, 1 },
                { 0, 1, 1, 1 },
                { 1, 1, 1, 0 }
            };


            Matrix w1 = (Matrix.Random(entrada + 1, pesos, r) - 0.5) * 2.0;
            Matrix w2 = (Matrix.Random(pesos + 1, salida, r) - 0.5) * 2.0;
            Matrix w3 = (Matrix.Random(pesos + 1, salida, r) - 0.5) * 2.0;
            Matrix w4 = (Matrix.Random(pesos + 1, salida, r) - 0.5) * 2.0;


            for (int l = 0; l < 5001; l++)
            {
                Matrix z1 = x.AddColumn(Matrix.Ones(umbral, 1));
                Matrix a1 = z1;
                Matrix z2 = (a1 * w1).AddColumn(Matrix.Ones(umbral, 1));
                Matrix a2 = siguiente(z2);
                Matrix z3 = a2 * w2;
                Matrix a3 = siguiente(z3);

                Matrix a3error = a3 - y;
                Matrix Delta3  = a3error * siguiente(z3, true);

                Matrix a2error = Delta3 * w2.T;
                Matrix Delta2  = a2error * siguiente(z2, true);
                Delta2 = Delta2.Slice(0, 1, Delta2.x, Delta2.y);

                w2 -= (a2.T * Delta3) * recalcular;
                w1 -= (a1.T * Delta2) * recalcular;

                double perdidas = a3error.abs.average * umbral;
                Console.WriteLine("Entrenando: " + perdidas);

                if (l % 1000 == 0)
                {
                    Console.WriteLine("---" + l + "---");
                    Console.WriteLine("X: " + x.size.ToString());
                    Console.WriteLine(x.ToString());

                    Console.WriteLine("Repesos: " + a3.size.ToString());
                    Console.WriteLine(a3);
                }
            }
            Console.ReadKey();
        }