public override void init() { entries = new int[0, 0]; buffer = new double[0]; precr = new double[0]; preci = new double[0]; bluesteinpool = new alglib.smp.shared_pool(); }
/************************************************************************* This function replaces data in XY by their CENTERED ranks: * XY is processed row-by-row * rows are processed separately * tied data are correctly handled (tied ranks are calculated) * centered ranks are just usual ranks, but centered in such way that sum of within-row values is equal to 0.0. * centering is performed by subtracting mean from each row, i.e it changes mean value, but does NOT change higher moments SMP EDITION OF ALGLIB: ! This function can utilize multicore capabilities of your system. In ! order to do this you have to call version with "smp_" prefix, which ! indicates that multicore code will be used. ! ! This note is given for users of SMP edition; if you use GPL edition, ! or commercial edition of ALGLIB without SMP support, you still will ! be able to call smp-version of this function, but all computations ! will be done serially. ! ! We recommend you to carefully read ALGLIB Reference Manual, section ! called 'SMP support', before using parallel version of this function. ! ! You should remember that starting/stopping worker thread always have ! non-zero cost. Although multicore version is pretty efficient on ! large problems, we do not recommend you to use it on small problems - ! ones where expected operations count is less than 100.000 INPUT PARAMETERS: XY - array[NPoints,NFeatures], dataset NPoints - number of points NFeatures- number of features OUTPUT PARAMETERS: XY - data are replaced by their within-row ranks; ranking starts from 0, ends at NFeatures-1 -- ALGLIB -- Copyright 18.04.2013 by Bochkanov Sergey *************************************************************************/ public static void rankdatacentered(double[,] xy, int npoints, int nfeatures) { apserv.apbuffers buf0 = new apserv.apbuffers(); apserv.apbuffers buf1 = new apserv.apbuffers(); int basecasecost = 0; alglib.smp.shared_pool pool = new alglib.smp.shared_pool(); alglib.ap.assert(npoints>=0, "RankData: NPoints<0"); alglib.ap.assert(nfeatures>=1, "RankData: NFeatures<1"); alglib.ap.assert(alglib.ap.rows(xy)>=npoints, "RankData: Rows(XY)<NPoints"); alglib.ap.assert(alglib.ap.cols(xy)>=nfeatures || npoints==0, "RankData: Cols(XY)<NFeatures"); alglib.ap.assert(apserv.apservisfinitematrix(xy, npoints, nfeatures), "RankData: XY contains infinite/NAN elements"); // // Basecase cost is a maximum cost of basecase problems. // Problems harded than that cost will be split. // // Problem cost is assumed to be NPoints*NFeatures*log2(NFeatures), // which is proportional, but NOT equal to number of FLOPs required // to solve problem. // basecasecost = 10000; // // Try to use serial code, no SMP functionality, no shared pools. // if( (double)(apserv.inttoreal(npoints)*apserv.inttoreal(nfeatures)*apserv.logbase2(nfeatures))<(double)(basecasecost) ) { rankdatabasecase(xy, 0, npoints, nfeatures, true, buf0, buf1); return; } // // Parallel code // alglib.smp.ae_shared_pool_set_seed(pool, buf0); rankdatarec(xy, 0, npoints, nfeatures, true, pool, basecasecost); }
/************************************************************************* This function trains neural network ensemble passed to this function using current dataset and early stopping training algorithm. Each early stopping round performs NRestarts random restarts (thus, EnsembleSize*NRestarts training rounds is performed in total). FOR USERS OF COMMERCIAL EDITION: ! Commercial version of ALGLIB includes two important improvements of ! this function: ! * multicore support (C++ and C# computational cores) ! * SSE support (C++ computational core) ! ! Second improvement gives constant speedup (2-3X). First improvement ! gives close-to-linear speedup on multicore systems. Following ! operations can be executed in parallel: ! * EnsembleSize training sessions performed for each of ensemble ! members (always parallelized) ! * NRestarts training sessions performed within each of training ! sessions (if NRestarts>1) ! * gradient calculation over large dataset (if dataset is large enough) ! ! In order to use multicore features you have to: ! * use commercial version of ALGLIB ! * call this function with "smp_" prefix, which indicates that ! multicore code will be used (for multicore support) ! ! In order to use SSE features you have to: ! * use commercial version of ALGLIB on Intel processors ! * use C++ computational core ! ! This note is given for users of commercial edition; if you use GPL ! edition, you still will be able to call smp-version of this function, ! but all computations will be done serially. ! ! We recommend you to carefully read ALGLIB Reference Manual, section ! called 'SMP support', before using parallel version of this function. INPUT PARAMETERS: S - trainer object; Ensemble - neural network ensemble. It must have same number of inputs and outputs/classes as was specified during creation of the trainer object. NRestarts - number of restarts, >=0: * NRestarts>0 means that specified number of random restarts are performed during each ES round; * NRestarts=0 is silently replaced by 1. OUTPUT PARAMETERS: Ensemble - trained ensemble; Rep - it contains all type of errors. NOTE: this training method uses BOTH early stopping and weight decay! So, you should select weight decay before starting training just as you select it before training "conventional" networks. NOTE: when no dataset was specified with MLPSetDataset/SetSparseDataset(), or single-point dataset was passed, ensemble is filled by zero values. NOTE: this method uses sum-of-squares error function for training. -- ALGLIB -- Copyright 22.08.2012 by Bochkanov Sergey *************************************************************************/ public static void mlptrainensemblees(mlptrainer s, mlpe.mlpensemble ensemble, int nrestarts, mlpreport rep) { int nin = 0; int nout = 0; int ntype = 0; int ttype = 0; alglib.smp.shared_pool esessions = new alglib.smp.shared_pool(); apserv.sinteger sgrad = new apserv.sinteger(); mlpbase.modelerrors tmprep = new mlpbase.modelerrors(); alglib.ap.assert(s.npoints>=0, "MLPTrainEnsembleES: parameter S is not initialized or is spoiled(S.NPoints<0)"); if( !mlpe.mlpeissoftmax(ensemble) ) { ntype = 0; } else { ntype = 1; } if( s.rcpar ) { ttype = 0; } else { ttype = 1; } alglib.ap.assert(ntype==ttype, "MLPTrainEnsembleES: internal error - type of input network is not similar to network type in trainer object"); nin = mlpbase.mlpgetinputscount(ensemble.network); alglib.ap.assert(s.nin==nin, "MLPTrainEnsembleES: number of inputs in trainer is not equal to number of inputs in ensemble network"); nout = mlpbase.mlpgetoutputscount(ensemble.network); alglib.ap.assert(s.nout==nout, "MLPTrainEnsembleES: number of outputs in trainer is not equal to number of outputs in ensemble network"); alglib.ap.assert(nrestarts>=0, "MLPTrainEnsembleES: NRestarts<0."); // // Initialize parameter Rep // rep.relclserror = 0; rep.avgce = 0; rep.rmserror = 0; rep.avgerror = 0; rep.avgrelerror = 0; rep.ngrad = 0; rep.nhess = 0; rep.ncholesky = 0; // // Allocate // apserv.ivectorsetlengthatleast(ref s.subset, s.npoints); apserv.ivectorsetlengthatleast(ref s.valsubset, s.npoints); // // Start training // // NOTE: ESessions is not initialized because MLPTrainEnsembleX // needs uninitialized pool. // sgrad.val = 0; mlptrainensemblex(s, ensemble, 0, ensemble.ensemblesize, nrestarts, 0, sgrad, true, esessions); rep.ngrad = sgrad.val; // // Calculate errors. // if( s.datatype==0 ) { mlpe.mlpeallerrorsx(ensemble, s.densexy, s.sparsexy, s.npoints, 0, ensemble.network.dummyidx, 0, s.npoints, 0, ensemble.network.buf, tmprep); } if( s.datatype==1 ) { mlpe.mlpeallerrorsx(ensemble, s.densexy, s.sparsexy, s.npoints, 1, ensemble.network.dummyidx, 0, s.npoints, 0, ensemble.network.buf, tmprep); } rep.relclserror = tmprep.relclserror; rep.avgce = tmprep.avgce; rep.rmserror = tmprep.rmserror; rep.avgerror = tmprep.avgerror; rep.avgrelerror = tmprep.avgrelerror; }
public override void init() { ct = new double[0,0]; ctbest = new double[0,0]; xycbest = new int[0]; xycprev = new int[0]; d2 = new double[0]; csizes = new int[0]; initbuf = new apserv.apbuffers(); updatepool = new alglib.smp.shared_pool(); }
/************************************************************************* This function trains neural network passed to this function, using current dataset (one which was passed to MLPSetDataset() or MLPSetSparseDataset()) and current training settings. Training from NRestarts random starting positions is performed, best network is chosen. Training is performed using current training algorithm. FOR USERS OF COMMERCIAL EDITION: ! Commercial version of ALGLIB includes two important improvements of ! this function: ! * multicore support (C++ and C# computational cores) ! * SSE support (C++ computational core) ! ! Second improvement gives constant speedup (2-3X). First improvement ! gives close-to-linear speedup on multicore systems. Following ! operations can be executed in parallel: ! * NRestarts training sessions performed within each of ! cross-validation rounds (if NRestarts>1) ! * gradient calculation over large dataset (if dataset is large enough) ! ! In order to use multicore features you have to: ! * use commercial version of ALGLIB ! * call this function with "smp_" prefix, which indicates that ! multicore code will be used (for multicore support) ! ! In order to use SSE features you have to: ! * use commercial version of ALGLIB on Intel processors ! * use C++ computational core ! ! This note is given for users of commercial edition; if you use GPL ! edition, you still will be able to call smp-version of this function, ! but all computations will be done serially. ! ! We recommend you to carefully read ALGLIB Reference Manual, section ! called 'SMP support', before using parallel version of this function. INPUT PARAMETERS: S - trainer object Network - neural network. It must have same number of inputs and output/classes as was specified during creation of the trainer object. NRestarts - number of restarts, >=0: * NRestarts>0 means that specified number of random restarts are performed, best network is chosen after training * NRestarts=0 means that current state of the network is used for training. OUTPUT PARAMETERS: Network - trained network NOTE: when no dataset was specified with MLPSetDataset/SetSparseDataset(), network is filled by zero values. Same behavior for functions MLPStartTraining and MLPContinueTraining. NOTE: this method uses sum-of-squares error function for training. -- ALGLIB -- Copyright 23.07.2012 by Bochkanov Sergey *************************************************************************/ public static void mlptrainnetwork(mlptrainer s, mlpbase.multilayerperceptron network, int nrestarts, mlpreport rep) { int nin = 0; int nout = 0; int wcount = 0; int ntype = 0; int ttype = 0; alglib.smp.shared_pool trnpool = new alglib.smp.shared_pool(); alglib.ap.assert(s.npoints>=0, "MLPTrainNetwork: parameter S is not initialized or is spoiled(S.NPoints<0)"); if( !mlpbase.mlpissoftmax(network) ) { ntype = 0; } else { ntype = 1; } if( s.rcpar ) { ttype = 0; } else { ttype = 1; } alglib.ap.assert(ntype==ttype, "MLPTrainNetwork: type of input network is not similar to network type in trainer object"); mlpbase.mlpproperties(network, ref nin, ref nout, ref wcount); alglib.ap.assert(s.nin==nin, "MLPTrainNetwork: number of inputs in trainer is not equal to number of inputs in network"); alglib.ap.assert(s.nout==nout, "MLPTrainNetwork: number of outputs in trainer is not equal to number of outputs in network"); alglib.ap.assert(nrestarts>=0, "MLPTrainNetwork: NRestarts<0."); // // Train // mlptrainnetworkx(s, nrestarts, -1, s.subset, -1, s.subset, 0, network, rep, true, trnpool); }
/************************************************************************* This function estimates generalization error using cross-validation on the current dataset with current training settings. FOR USERS OF COMMERCIAL EDITION: ! Commercial version of ALGLIB includes two important improvements of ! this function: ! * multicore support (C++ and C# computational cores) ! * SSE support (C++ computational core) ! ! Second improvement gives constant speedup (2-3X). First improvement ! gives close-to-linear speedup on multicore systems. Following ! operations can be executed in parallel: ! * FoldsCount cross-validation rounds (always) ! * NRestarts training sessions performed within each of ! cross-validation rounds (if NRestarts>1) ! * gradient calculation over large dataset (if dataset is large enough) ! ! In order to use multicore features you have to: ! * use commercial version of ALGLIB ! * call this function with "smp_" prefix, which indicates that ! multicore code will be used (for multicore support) ! ! In order to use SSE features you have to: ! * use commercial version of ALGLIB on Intel processors ! * use C++ computational core ! ! This note is given for users of commercial edition; if you use GPL ! edition, you still will be able to call smp-version of this function, ! but all computations will be done serially. ! ! We recommend you to carefully read ALGLIB Reference Manual, section ! called 'SMP support', before using parallel version of this function. INPUT PARAMETERS: S - trainer object Network - neural network. It must have same number of inputs and output/classes as was specified during creation of the trainer object. Network is not changed during cross- validation and is not trained - it is used only as representative of its architecture. I.e., we estimate generalization properties of ARCHITECTURE, not some specific network. NRestarts - number of restarts, >=0: * NRestarts>0 means that for each cross-validation round specified number of random restarts is performed, with best network being chosen after training. * NRestarts=0 is same as NRestarts=1 FoldsCount - number of folds in k-fold cross-validation: * 2<=FoldsCount<=size of dataset * recommended value: 10. * values larger than dataset size will be silently truncated down to dataset size OUTPUT PARAMETERS: Rep - structure which contains cross-validation estimates: * Rep.RelCLSError - fraction of misclassified cases. * Rep.AvgCE - acerage cross-entropy * Rep.RMSError - root-mean-square error * Rep.AvgError - average error * Rep.AvgRelError - average relative error NOTE: when no dataset was specified with MLPSetDataset/SetSparseDataset(), or subset with only one point was given, zeros are returned as estimates. NOTE: this method performs FoldsCount cross-validation rounds, each one with NRestarts random starts. Thus, FoldsCount*NRestarts networks are trained in total. NOTE: Rep.RelCLSError/Rep.AvgCE are zero on regression problems. NOTE: on classification problems Rep.RMSError/Rep.AvgError/Rep.AvgRelError contain errors in prediction of posterior probabilities. -- ALGLIB -- Copyright 23.07.2012 by Bochkanov Sergey *************************************************************************/ public static void mlpkfoldcv(mlptrainer s, mlpbase.multilayerperceptron network, int nrestarts, int foldscount, mlpreport rep) { alglib.smp.shared_pool pooldatacv = new alglib.smp.shared_pool(); mlpparallelizationcv datacv = new mlpparallelizationcv(); mlpparallelizationcv sdatacv = null; double[,] cvy = new double[0,0]; int[] folds = new int[0]; double[] buf = new double[0]; double[] dy = new double[0]; int nin = 0; int nout = 0; int wcount = 0; int rowsize = 0; int ntype = 0; int ttype = 0; int i = 0; int j = 0; int k = 0; hqrnd.hqrndstate rs = new hqrnd.hqrndstate(); int i_ = 0; int i1_ = 0; if( !mlpbase.mlpissoftmax(network) ) { ntype = 0; } else { ntype = 1; } if( s.rcpar ) { ttype = 0; } else { ttype = 1; } alglib.ap.assert(ntype==ttype, "MLPKFoldCV: type of input network is not similar to network type in trainer object"); alglib.ap.assert(s.npoints>=0, "MLPKFoldCV: possible trainer S is not initialized(S.NPoints<0)"); mlpbase.mlpproperties(network, ref nin, ref nout, ref wcount); alglib.ap.assert(s.nin==nin, "MLPKFoldCV: number of inputs in trainer is not equal to number of inputs in network"); alglib.ap.assert(s.nout==nout, "MLPKFoldCV: number of outputs in trainer is not equal to number of outputs in network"); alglib.ap.assert(nrestarts>=0, "MLPKFoldCV: NRestarts<0"); alglib.ap.assert(foldscount>=2, "MLPKFoldCV: FoldsCount<2"); if( foldscount>s.npoints ) { foldscount = s.npoints; } rep.relclserror = 0; rep.avgce = 0; rep.rmserror = 0; rep.avgerror = 0; rep.avgrelerror = 0; hqrnd.hqrndrandomize(rs); rep.ngrad = 0; rep.nhess = 0; rep.ncholesky = 0; if( s.npoints==0 || s.npoints==1 ) { return; } // // Read network geometry, test parameters // if( s.rcpar ) { rowsize = nin+nout; dy = new double[nout]; bdss.dserrallocate(-nout, ref buf); } else { rowsize = nin+1; dy = new double[1]; bdss.dserrallocate(nout, ref buf); } // // Folds // folds = new int[s.npoints]; for(i=0; i<=s.npoints-1; i++) { folds[i] = i*foldscount/s.npoints; } for(i=0; i<=s.npoints-2; i++) { j = i+hqrnd.hqrnduniformi(rs, s.npoints-i); if( j!=i ) { k = folds[i]; folds[i] = folds[j]; folds[j] = k; } } cvy = new double[s.npoints, nout]; // // Initialize SEED-value for shared pool // datacv.ngrad = 0; mlpbase.mlpcopy(network, datacv.network); datacv.subset = new int[s.npoints]; datacv.xyrow = new double[rowsize]; datacv.y = new double[nout]; // // Create shared pool // alglib.smp.ae_shared_pool_set_seed(pooldatacv, datacv); // // Parallelization // mthreadcv(s, rowsize, nrestarts, folds, 0, foldscount, cvy, pooldatacv); // // Calculate value for NGrad // alglib.smp.ae_shared_pool_first_recycled(pooldatacv, ref sdatacv); while( sdatacv!=null ) { rep.ngrad = rep.ngrad+sdatacv.ngrad; alglib.smp.ae_shared_pool_next_recycled(pooldatacv, ref sdatacv); } // // Connect of results and calculate cross-validation error // for(i=0; i<=s.npoints-1; i++) { if( s.datatype==0 ) { for(i_=0; i_<=rowsize-1;i_++) { datacv.xyrow[i_] = s.densexy[i,i_]; } } if( s.datatype==1 ) { sparse.sparsegetrow(s.sparsexy, i, ref datacv.xyrow); } for(i_=0; i_<=nout-1;i_++) { datacv.y[i_] = cvy[i,i_]; } if( s.rcpar ) { i1_ = (nin) - (0); for(i_=0; i_<=nout-1;i_++) { dy[i_] = datacv.xyrow[i_+i1_]; } } else { dy[0] = datacv.xyrow[nin]; } bdss.dserraccumulate(ref buf, datacv.y, dy); } bdss.dserrfinish(ref buf); rep.relclserror = buf[0]; rep.avgce = buf[1]; rep.rmserror = buf[2]; rep.avgerror = buf[3]; rep.avgrelerror = buf[4]; }
public override void init() { network = new mlpbase.multilayerperceptron(); rep = new mlpreport(); subset = new int[0]; xyrow = new double[0]; y = new double[0]; trnpool = new alglib.smp.shared_pool(); }
public override void init() { trnsubset = new int[0]; valsubset = new int[0]; mlpsessions = new alglib.smp.shared_pool(); mlprep = new mlpreport(); network = new mlpbase.multilayerperceptron(); }
public override void init() { hllayersizes = new int[0]; hlconnections = new int[0]; hlneurons = new int[0]; structinfo = new int[0]; weights = new double[0]; columnmeans = new double[0]; columnsigmas = new double[0]; neurons = new double[0]; dfdnet = new double[0]; derror = new double[0]; x = new double[0]; y = new double[0]; xy = new double[0,0]; xyrow = new double[0]; nwbuf = new double[0]; integerbuf = new int[0]; err = new modelerrors(); rndbuf = new double[0]; buf = new alglib.smp.shared_pool(); gradbuf = new alglib.smp.shared_pool(); dummydxy = new double[0,0]; dummysxy = new sparse.sparsematrix(); dummyidx = new int[0]; dummypool = new alglib.smp.shared_pool(); }