コード例 #1
0
        public Dictionary <string, double> GetWeights(List <Sample> samples)
        {
            int nAttributes = 13;
            int nSamples    = samples.Count;

            double[,] tsData = new double[nSamples, nAttributes];
            double[] resultData = new double[nSamples];

            for (int i = 0; i < samples.Count; i++)
            {
                tsData[i, 0]  = samples[i].Precipitation;
                tsData[i, 1]  = samples[i].SoilWatFieldCapacity;
                tsData[i, 2]  = samples[i].Swawp;
                tsData[i, 3]  = samples[i].SoilWaterStorage;
                tsData[i, 4]  = samples[i].IrrigationEfficiency;
                tsData[i, 5]  = samples[i].MaxYield;
                tsData[i, 6]  = samples[i].GrossIrrig;
                tsData[i, 7]  = samples[i].InputCosts;
                tsData[i, 8]  = samples[i].OperationCosts;
                tsData[i, 9]  = samples[i].MiscCosts;
                tsData[i, 10] = samples[i].IrrigCosts;
                tsData[i, 11] = samples[i].MiscReturns;
                tsData[i, 6]  = samples[i].TotalIrrig;
                tsData[i, 13] = samples[i].PriceUnit;

                resultData[i] = samples[i].Yield;
            }

            double[] weights   = null;
            int      fitResult = 0;

            alglib.lsfit.lsfitreport rep = new alglib.lsfit.lsfitreport();
            alglib.lsfit.lsfitlinear(resultData, tsData, nSamples, nAttributes, ref fitResult, ref weights, rep);

            Dictionary <string, double> labelsAndWeights = new Dictionary <string, double>();

            labelsAndWeights.Add("Precipitation", weights[0]);
            labelsAndWeights.Add("SoilWatFieldCapacity", weights[1]);
            labelsAndWeights.Add("Swawp", weights[2]);
            labelsAndWeights.Add("SoilWaterStorage", weights[2]);
            labelsAndWeights.Add("IrrigationEfficiency", weights[3]);
            labelsAndWeights.Add("MaxYield", weights[4]);
            labelsAndWeights.Add("GrossIrrig", weights[5]);
            labelsAndWeights.Add("InputCosts", weights[6]);
            labelsAndWeights.Add("OperationCosts", weights[7]);
            labelsAndWeights.Add("MiscCosts", weights[8]);
            labelsAndWeights.Add("IrrigCosts", weights[9]);
            labelsAndWeights.Add("MiscReturns", weights[10]);
            labelsAndWeights.Add("TotalIrrig", weights[11]);
            labelsAndWeights.Add("PriceUnit", weights[12]);

            return(labelsAndWeights);
        }
コード例 #2
0
        public static double PredictStockPrice(string SearchTerm, string StockCode, DateTime FromDate, DateTime ToDate)
        {
            Console.WriteLine("Retrieving historic data ({0} days available)", ToDate.Subtract(FromDate).Days);

            var samples = RetrieveEnties(SearchTerm, StockCode, FromDate, ToDate);

            Console.WriteLine("Calculating multiple regression");

            int nAttributes = 3;
            int nSamples    = samples.Count;

            double[,] tsData = new double[nSamples, nAttributes];
            double[] resultData = new double[nSamples];

            for (int i = 0; i < samples.Count; i++)
            {
                tsData[i, 0] = samples[i].FollowerCount;
                tsData[i, 1] = samples[i].MaxTweetDensity;
                tsData[i, 2] = samples[i].PositiveSentiment;

                resultData[i] = samples[i].ClosingPrice;
            }

            double[] weights   = null;
            int      fitResult = 0;

            alglib.lsfit.lsfitreport rep = new alglib.lsfit.lsfitreport();
            alglib.lsfit.lsfitlinear(resultData, tsData, nSamples, nAttributes, ref fitResult, ref weights, rep);


            Console.WriteLine("Retrieving latest tweets");
            var tweets  = DataRetrieve.SearchTwitter(SearchTerm);
            var dayData = from t in tweets
                          where t.CreatedAt.Date > DateTime.Today.AddDays(-_dayThreshold) &&
                          t.CreatedAt.Date <= DateTime.Today
                          select t;

            var followerCount = (from row in dayData
                                 select row.FollowersCount + 1)
                                .Sum();
            var positive = (from row in dayData
                            select row.Positive)
                           .Sum() / dayData.Count();
            var maxDensity = 0d;
            var time       = DateTime.Now.AddHours(7);

            for (int i = 0; i <= 24 * _dayThreshold; i++)
            {
                var select = (from row in dayData
                              where row.CreatedAt >= time.AddDays(-_dayThreshold).AddHours(i) &&
                              row.CreatedAt < time.AddDays(-_dayThreshold).AddHours(i + 1)
                              select row.Positive);
                var density = select.Sum();
                maxDensity = Math.Max(maxDensity, density);
            }


            var predictedPrice = weights[0] * followerCount +
                                 weights[1] * maxDensity +
                                 weights[2] * positive;

            return(predictedPrice);
        }
コード例 #3
0
        /// <summary>
        ///
        /// </summary>
        /// <param name="tables"></param>diningArea.tables
        /// <param name="customers"></param>diningArea.customers
        /// <param name="orders"></param>diningArea.orders
        /// <param name="finishedOrders"></param>training data
        /// <param name="allItem"></param>
        //make sure the itemId is continuous
        public void PredictWaitingTimeReg(List <Table> tables, List <Customer> customers, List <Order> orders, List <Order> finishedOrders, List <Item> allItem)
        {
            //HashSet<Item> hs = new HashSet<Item>(allItem);//去重

            int nAttributes = allItem.Count + 1;
            int nSamples    = finishedOrders.Count;

            double[,] tsData = new double[nSamples, nAttributes];
            double[] resultData = new double[nSamples];

            for (int i = 0; i < nSamples; i++)
            {
                for (int j = 0; j < nAttributes; j++)
                {
                    tsData[i, j] = 0;
                }
                tsData[i, 0] = finishedOrders[i].NumberofPeople;
                foreach (var item in finishedOrders[i].Items)
                {
                    tsData[i, item.ItemId] = item.ItemAmount;
                }
                TimeSpan ts = finishedOrders[i].FinishTime - finishedOrders[i].StartTime;
                resultData[i] = ts.TotalMinutes;
            }

            double[] weights   = null;
            int      fitResult = 0;

            alglib.lsfit.lsfitreport rep = new alglib.lsfit.lsfitreport();
            alglib.lsfit.lsfitlinear(resultData, tsData, nSamples, nAttributes, ref fitResult, ref weights, rep);

            //about weight: weights[0] -> NumberofPeople,weights[1-allItem.Count]->ItemId,weights[allItem.Count+1 - nAttributes]->ItemAmount
            foreach (var t in tables)
            {
                if (t.TableStatus == TableStatus.Active)
                {
                    t.CountDown = System.Data.SqlTypes.SqlDateTime.MinValue.Value;
                }
                else if (t.TableStatus == TableStatus.Cleaning)
                {
                    //t.CountDown = DateTime.Now.AddMinutes(5);
                    //this operation will be done when set tablestatus to cleaning.
                }
                else if (t.TableStatus == TableStatus.Reserved || t.TableStatus == TableStatus.Breakdown)
                {
                    t.CountDown = System.Data.SqlTypes.SqlDateTime.MaxValue.Value;
                }
                else if (fitResult == 1 && t.OrderId > 0)//solved
                {
                    Order  currentOrder = orders.Find(x => x.OrderId == t.OrderId);
                    double waitTime     = weights[0] * currentOrder.NumberofPeople;
                    foreach (var item in currentOrder.Items)
                    {
                        waitTime += weights[item.ItemId] * item.ItemAmount;
                    }

                    t.CountDown = currentOrder.StartTime.AddMinutes(waitTime);
                }
            }


            //Dictionary<int, double> labelsAndWeights = new Dictionary<int, double>();
            //labelsAndWeights.Add(0, weights[0]);
            //labelsAndWeights.Add(1, weights[1]);
            //labelsAndWeights.Add(2, weights[2]);
        }