コード例 #1
0
        /// <summary>
        ///   Gets the recommended sample size for the test to attain
        ///   the power indicating in <see cref="IPowerAnalysis.Power"/> considering
        ///   values of <see cref="IPowerAnalysis.Effect"/> and <see cref="IPowerAnalysis.Size"/>.
        /// </summary>
        ///
        /// <returns>
        ///   Recommended sample size for attaining the given
        ///   <see cref="IPowerAnalysis.Power"/> for size effect <see cref="IPowerAnalysis.Effect"/>
        ///   under the given <see cref="IPowerAnalysis.Size"/>.
        /// </returns>
        ///
        public override void ComputeSamples(
            double proportion             // = 1
            )
        {
            double Za = ZTest.PValueToStatistic(Size, Tail);
            double Zb = NormalDistribution.Standard
                        .InverseDistributionFunction(Power);

            double n = (Za + Zb) / Effect;

            Samples1 = n * n;
            Samples2 = Samples1 * proportion;
        }
コード例 #2
0
        public void PowerTest2()
        {
            // Example from http://www.cyclismo.org/tutorial/R/power.html

            double mean             = 6.5;
            double stdDev           = 2;
            int    samples          = 20;
            double hypothesizedMean = 5;

            OneSampleHypothesis hypothesis = OneSampleHypothesis.ValueIsDifferentFromHypothesis;
            ZTest target = new ZTest(mean, stdDev, samples, hypothesizedMean, hypothesis);

            IPowerAnalysis power = target.Analysis;

            Assert.AreEqual(0.918362, power.Power, 1e-6);
        }
コード例 #3
0
        public void EffectSizeTest2()
        {
            // Example from http://wise.cgu.edu/powermod/computing.asp

            double mean             = 104;
            double stdDev           = 10;
            int    samples          = 25;
            double hypothesizedMean = 100;

            OneSampleHypothesis hypothesis = OneSampleHypothesis.ValueIsDifferentFromHypothesis;
            ZTest target             = new ZTest(mean, stdDev, samples, hypothesizedMean, hypothesis);
            ZTestPowerAnalysis power = (ZTestPowerAnalysis)target.Analysis;

            power.Size  = 0.05;
            power.Power = 0.80;
            power.ComputeEffect();

            Assert.AreEqual(0.56, power.Effect, 0.001);
        }
コード例 #4
0
        public void Read(AssetReader reader)
        {
            Name = reader.ReadStringAligned();
            RtBlend0.Read(reader);
            RtBlend1.Read(reader);
            RtBlend2.Read(reader);
            RtBlend3.Read(reader);
            RtBlend4.Read(reader);
            RtBlend5.Read(reader);
            RtBlend6.Read(reader);
            RtBlend7.Read(reader);
            RtSeparateBlend = reader.ReadBoolean();
            reader.AlignStream(AlignType.Align4);

            if (IsReadZClip(reader.Version))
            {
                ZClip.Read(reader);
            }
            ZTest.Read(reader);
            ZWrite.Read(reader);
            Culling.Read(reader);
            OffsetFactor.Read(reader);
            OffsetUnits.Read(reader);
            AlphaToMask.Read(reader);
            StencilOp.Read(reader);
            StencilOpFront.Read(reader);
            StencilOpBack.Read(reader);
            StencilReadMask.Read(reader);
            StencilWriteMask.Read(reader);
            StencilRef.Read(reader);
            FogStart.Read(reader);
            FogEnd.Read(reader);
            FogDensity.Read(reader);
            FogColor.Read(reader);

            FogMode      = (FogMode)reader.ReadInt32();
            GpuProgramID = reader.ReadInt32();
            Tags.Read(reader);
            LOD      = reader.ReadInt32();
            Lighting = reader.ReadBoolean();
            reader.AlignStream(AlignType.Align4);
        }
コード例 #5
0
        public void ZTestConstructorTest4()
        {
            // Example from http://science.kennesaw.edu/~jdemaio/1107/hypothesis_testing.htm

            double mean    = 51.5;
            double stdDev  = 10;
            int    samples = 100;

            double hypothesizedMean = 50;

            // Null Hypothesis: mean =  58
            // Alternative    : mean != 58

            OneSampleHypothesis hypothesis = OneSampleHypothesis.ValueIsDifferentFromHypothesis;
            ZTest target = new ZTest(mean, stdDev, samples, hypothesizedMean, hypothesis);

            Assert.AreEqual(1.5, target.Statistic, 0.01);
            Assert.AreEqual(OneSampleHypothesis.ValueIsDifferentFromHypothesis, target.Hypothesis);
            Assert.AreEqual(DistributionTail.TwoTail, target.Tail);
            Assert.IsFalse(target.Significant);
        }
コード例 #6
0
        public void PowerTest1()
        {
            // Example from http://wise.cgu.edu/powermod/computing.asp

            double mean             = 105;
            double stdDev           = 10;
            int    samples          = 25;
            double hypothesizedMean = 100;

            OneSampleHypothesis hypothesis = OneSampleHypothesis.ValueIsGreaterThanHypothesis;
            ZTest target = new ZTest(mean, stdDev, samples, hypothesizedMean, hypothesis);
            var   power  = target.Analysis;

            Assert.AreEqual(0.804, power.Power, 1e-3);

            mean   = 90;
            target = new ZTest(mean, stdDev, samples, hypothesizedMean, hypothesis);

            power = target.Analysis;
            Assert.AreEqual(0.0, power.Power, 1e-3);
        }
コード例 #7
0
        public void ZTestConstructorTest3()
        {
            // Example from http://science.kennesaw.edu/~jdemaio/1107/hypothesis_testing.htm

            double mean    = 53;
            double stdDev  = 8;
            int    samples = 49;

            double hypothesizedMean = 58;

            // Null Hypothesis: mean = 58
            // Alternative    : mean > 58

            OneSampleHypothesis hypothesis = OneSampleHypothesis.ValueIsGreaterThanHypothesis;
            ZTest target = new ZTest(mean, stdDev, samples, hypothesizedMean, hypothesis);

            Assert.AreEqual(-4.38, target.Statistic, 0.01);
            Assert.AreEqual(OneSampleHypothesis.ValueIsGreaterThanHypothesis, target.Hypothesis);
            Assert.AreEqual(DistributionTail.OneUpper, target.Tail);
            Assert.IsFalse(target.Significant);
        }
コード例 #8
0
        public void SampleSizeTest1()
        {
            // Example from http://wise.cgu.edu/powermod/computing.asp

            double mean             = 104;
            double stdDev           = 10;
            int    samples          = 25;
            double hypothesizedMean = 100;

            OneSampleHypothesis hypothesis = OneSampleHypothesis.ValueIsGreaterThanHypothesis;
            ZTest target = new ZTest(mean, stdDev, samples, hypothesizedMean, hypothesis);

            ZTestPowerAnalysis power = (ZTestPowerAnalysis)target.Analysis;

            power.Size  = 0.01;
            power.Power = 0.90;
            power.ComputeSamples();

            double sampleSize = System.Math.Ceiling(power.Samples);

            Assert.AreEqual(82, sampleSize, 1e-16);
        }
コード例 #9
0
ファイル: OutputResults.cs プロジェクト: rolyhudson/lostCity
        private void zTest(List <double> scores, double hypothesismean)
        {
            // Creates the Simple Descriptive Analysis of the given source
            DescriptiveAnalysis da = new DescriptiveAnalysis(scores.ToArray());
            int    sampleSize      = scores.Count;
            double sampleMean      = da.Means[0];


            double standardDeviation = da.StandardDeviations[0];
            double hypothesizedMean  = hypothesismean;
            ZTest  test = new ZTest(sampleMean, standardDeviation, sampleSize,
                                    hypothesizedMean, OneSampleHypothesis.ValueIsSmallerThanHypothesis);

            // Now, we can check whether this result would be
            // unlikely under a standard significance level:

            bool significant = test.Significant;

            // We can also check the test statistic and its P-Value
            double statistic = test.Statistic;
            double pvalue    = test.PValue;
        }
コード例 #10
0
        public void Read(EndianStream stream)
        {
            Name = stream.ReadStringAligned();
            RtBlend0.Read(stream);
            RtBlend1.Read(stream);
            RtBlend2.Read(stream);
            RtBlend3.Read(stream);
            RtBlend4.Read(stream);
            RtBlend5.Read(stream);
            RtBlend6.Read(stream);
            RtBlend7.Read(stream);
            RtSeparateBlend = stream.ReadBoolean();
            stream.AlignStream(AlignType.Align4);

            ZTest.Read(stream);
            ZWrite.Read(stream);
            Culling.Read(stream);
            OffsetFactor.Read(stream);
            OffsetUnits.Read(stream);
            AlphaToMask.Read(stream);
            StencilOp.Read(stream);
            StencilOpFront.Read(stream);
            StencilOpBack.Read(stream);
            StencilReadMask.Read(stream);
            StencilWriteMask.Read(stream);
            StencilRef.Read(stream);
            FogStart.Read(stream);
            FogEnd.Read(stream);
            FogDensity.Read(stream);
            FogColor.Read(stream);

            FogMode      = stream.ReadInt32();
            GpuProgramID = stream.ReadInt32();
            Tags.Read(stream);
            LOD      = stream.ReadInt32();
            Lighting = stream.ReadBoolean();
            stream.AlignStream(AlignType.Align4);
        }
コード例 #11
0
 public static bool IsLEqual(this ZTest _this)
 {
     return(_this == ZTest.LEqual);
 }
コード例 #12
0
 public static bool IsNone(this ZTest _this)
 {
     return(_this == ZTest.None);
 }
コード例 #13
0
        public void learn_Test()
        {
            #region doc_learn_part1
            // Consider the following data. An experimenter would
            // like to infer a relationship between two variables
            // A and B and a corresponding outcome variable R.

            double[][] example =
            {
                //                A    B      R
                new double[] { 6.41, 10.11, 26.1 },
                new double[] { 6.61, 22.61, 33.8 },
                new double[] { 8.45, 11.11, 52.7 },
                new double[] { 1.22, 18.11, 16.2 },
                new double[] { 7.42, 12.81, 87.3 },
                new double[] { 4.42, 10.21, 12.5 },
                new double[] { 8.61, 11.94, 77.5 },
                new double[] { 1.73, 13.13, 12.1 },
                new double[] { 7.47, 17.11, 86.5 },
                new double[] { 6.11, 15.13, 62.8 },
                new double[] { 1.42, 16.11, 17.5 },
            };

            // For this, we first extract the input and output
            // pairs. The first two columns have values for the
            // input variables, and the last for the output:

            double[][] inputs = example.GetColumns(new[] { 0, 1 });
            double[]   output = example.GetColumn(2);

            // We can create a new multiple linear analysis for the variables
            var mlra = new MultipleLinearRegressionAnalysis(intercept: true);

            // Compute the analysis and obtain the estimated regression
            MultipleLinearRegression regression = mlra.Learn(inputs, output);
            #endregion

            // We can also show a summary ANOVA
            // Accord.Controls.DataGridBox.Show(regression.Table);

            #region doc_learn_part2
            // And also extract other useful information, such
            // as the linear coefficients' values and std errors:
            double[] coef = mlra.CoefficientValues;
            double[] stde = mlra.StandardErrors;

            // Coefficients of performance, such as r²
            double rsquared = mlra.RSquared; // 0.62879

            // Hypothesis tests for the whole model
            ZTest ztest = mlra.ZTest; // 0.99999
            FTest ftest = mlra.FTest; // 0.01898

            // and for individual coefficients
            TTest ttest0 = mlra.Coefficients[0].TTest; // 0.00622
            TTest ttest1 = mlra.Coefficients[1].TTest; // 0.53484

            // and also extract confidence intervals
            DoubleRange ci = mlra.Coefficients[0].Confidence; // [3.2616, 14.2193]

            // We can use the analysis to predict an output for a sample
            double y = mlra.Regression.Transform(new double[] { 10, 15 });

            // We can also obtain confidence intervals for the prediction:
            DoubleRange pci = mlra.GetConfidenceInterval(new double[] { 10, 15 });

            // and also prediction intervals for the same prediction:
            DoubleRange ppi = mlra.GetPredictionInterval(new double[] { 10, 15 });
            #endregion


            Assert.AreEqual(3, coef.Length);
            Assert.AreEqual(8.7405051051757816, coef[0]);
            Assert.AreEqual(1.1198079243314365, coef[1], 1e-10);
            Assert.AreEqual(-19.604474518407862, coef[2], 1e-10);
            Assert.IsFalse(coef.HasNaN());

            Assert.AreEqual(2.375916659234715, stde[0], 1e-10);
            Assert.AreEqual(1.7268508921418664, stde[1], 1e-10);
            Assert.AreEqual(30.989640986710953, stde[2], 1e-10);
            Assert.IsFalse(coef.HasNaN());

            Assert.AreEqual(0.62879941171298936, rsquared, 1e-10);

            Assert.AreEqual(0.99999999999999822, ztest.PValue, 1e-10);
            Assert.AreEqual(0.018986050133298293, ftest.PValue, 1e-10);

            Assert.AreEqual(0.0062299844256985537, ttest0.PValue, 1e-10);
            Assert.AreEqual(0.53484850318449118, ttest1.PValue, 1e-14);
            Assert.IsFalse(Double.IsNaN(ttest1.PValue));

            Assert.AreEqual(3.2616314640800566, ci.Min, 1e-10);
            Assert.AreEqual(14.219378746271506, ci.Max, 1e-10);



            double[][]  im   = mlra.InformationMatrix;
            double      mse  = regression.GetStandardError(inputs, output);
            DoubleRange epci = regression.GetConfidenceInterval(new double[] { 10, 15 }, mse, inputs.Length, im);

            Assert.AreEqual(epci.Min, pci.Min, 1e-10);
            Assert.AreEqual(epci.Max, pci.Max, 1e-10);

            Assert.AreEqual(55.27840511658215, pci.Min, 1e-10);
            Assert.AreEqual(113.91698568006086, pci.Max, 1e-10);

            Assert.AreEqual(28.783074454641557, ppi.Min, 1e-10);
            Assert.AreEqual(140.41231634200145, ppi.Max, 1e-10);
        }
コード例 #14
0
ファイル: ShaderSettings.cs プロジェクト: keijiro/SSE
        //property.Expanded =  EditorGUILayout.Foldout( property.Expanded, property.GetPropertyType().PropertyTypeString() );
        public void Draw()
        {
            var shaderNameContent = new GUIContent(
                    "Shader Name",
                    "Name for shader. Includes the hierarchy listing, that is, MyShaders/Shader will be in a folder called \"MyShaders\" in the shader selection dropdown. Also used when referring to fallback shaders.");

            var oldColor = GUI.color;
            if( string.IsNullOrEmpty(_shaderName ) )
            {
                GUI.color = Color.red;
            }
            _shaderName.Value = EditorGUILayout.TextField(shaderNameContent, _shaderName.Value);
            GUI.color = oldColor;

            var shaderFallbackContent = new GUIContent(
                    "Shader Fallback",
                    "Fallback shader to use in case this shader can not be used.");

            _shaderFallback.Value = EditorGUILayout.TextField( shaderFallbackContent, _shaderFallback.Value );

            var targetContent = new GUIContent("Shader Model","Requires more recent hardware to use the shader, but allows for more instructions, texture reads, and more input information.");
            _shaderTarget = (ShaderTarget)EditorGUILayout.EnumPopup( targetContent, _shaderTarget );

            var excludePathContent = new GUIContent("Exclude Path","Exclude a renderpath from shader generation");
            _excludePath = (ExcludePath)EditorGUILayout.EnumPopup( excludePathContent, _excludePath );

            GUILayout.Space(8);
            _showQueueSettings = EditorGUILayout.Foldout( _showQueueSettings, "Queue Settings" );
            if( _showQueueSettings )
            {
                var renderTypeContent = new GUIContent("Render Type","This is the rendertype tag inserted into the shader. Can be used for shader replace");
                _renderType = (RenderType)EditorGUILayout.EnumPopup( renderTypeContent, _renderType );

                if ( _renderType == RenderType.Custom )
                    _renderTypeCustom.Value = EditorGUILayout.TextField( "Custom Type" ,_renderTypeCustom.Value );

                var queueContent = new GUIContent("Render Queue","The render queue that this material will be put in");
                _queue = (Queue)EditorGUILayout.EnumPopup( queueContent, _queue );

                var offContent = new GUIContent(
                    "Queue Offset",
                    "Offset for drawing. Used to ensure some things draw before or after others, it specifically is an offset from the given queue- That is to say, you won't have a transparent object draw before an opaque object (or similar) due to this offset.");
                _queueAdjust = EditorGUILayout.IntSlider(offContent, _queueAdjust.Value, -100, 100);
            }

            GUILayout.Space( 8 );
            _showCullingAndDepthSettings = EditorGUILayout.Foldout( _showCullingAndDepthSettings, "Culling and Depth Settings" );
            if( _showCullingAndDepthSettings )
            {
                var zWriteContent = new GUIContent("Write Depth","Depth is considered when testing other objects. Disable for certain effects, like letting other things draw over yourself, or for speed on most overlays.");
                _zWrite = (ZWrite)EditorGUILayout.EnumPopup( zWriteContent, _zWrite );

                var cullModeContent = new GUIContent("CullMode","Select back / forward to clip backwards facing polygons");
                _cullMode = (CullMode)EditorGUILayout.EnumPopup( cullModeContent, _cullMode );

                var zTestContent = new GUIContent("ZTest","Select Z-Test Value");
                _zTest = (ZTest)EditorGUILayout.EnumPopup( zTestContent, _zTest );

                var enableLODContent = new GUIContent("Enable LOD","Enable Shader LOD scaling");
                _enableLOD = EditorGUILayout.BeginToggleGroup( enableLODContent, _enableLOD );
                _lod = EditorGUILayout.IntSlider( "LOD", _lod, 0, 1000 );
                EditorGUILayout.EndToggleGroup();
            }

            GUILayout.Space( 8 );
            _showBlending = EditorGUILayout.Foldout( _showBlending, "Blending Settings" );
            if( _showBlending )
            {
                var blendingTypeContent = new GUIContent("Blend Type","Use a build in blend mode or a custom blend mode");
                _blending = (BlendingType)EditorGUILayout.EnumPopup( blendingTypeContent, _blending );

                if( CustomBlendingEnabled() )
                {
                    var srcBlendContent = new GUIContent("Src Blend Mode","How the source channel of blending is used");
                    _srcBlend = (BlendingMode)EditorGUILayout.EnumPopup( srcBlendContent, _srcBlend );

                    var dstBlendContent = new GUIContent("Dst Blend Mode","How the destination channel of blending is used");
                    _dstBlend = (BlendingMode)EditorGUILayout.EnumPopup( dstBlendContent, _dstBlend );
                }
            }

            GUILayout.Space( 8 );
            _showColorAndLighting = EditorGUILayout.Foldout( _showColorAndLighting, "Color And Lighting Settings" );
            if( _showColorAndLighting )
            {
                GUILayout.BeginHorizontal();
                GUILayout.Label( "Color Mask:", GUILayout.ExpandWidth(false) );
                _colorMaskR.Value = EditorExtensions.ToggleButton( _colorMaskR.Value, "R","Mask R Channel");
                _colorMaskG.Value = EditorExtensions.ToggleButton( _colorMaskG.Value, "G","Mask G Channel");
                _colorMaskB.Value = EditorExtensions.ToggleButton( _colorMaskB.Value, "B","Mask B Channel");
                _colorMaskA.Value = EditorExtensions.ToggleButton( _colorMaskA.Value, "A","Mask A Channel");
                GUILayout.EndHorizontal();

                _dualForward = GUILayout.Toggle( _dualForward, new GUIContent( "Forward Dual Lightmaps","Use dual lightmaps in the forward rendering path" ));
                _fullForwardShadows = GUILayout.Toggle( _fullForwardShadows, new GUIContent( "Forward Full Shadows", "Support all shadow types in Forward rendering path." ));
                _softVegetation = GUILayout.Toggle( _softVegetation, new GUIContent( "Soft Vegetation", "Makes the surface shader only be rendered when Soft Vegetation is on." ));
                _noAmbient = GUILayout.Toggle( _noAmbient, new GUIContent( "No Ambient", "Do not apply any ambient lighting or spherical harmonics lights."));
                _noLightmap = GUILayout.Toggle( _noLightmap, new GUIContent( "No Lightmaps", "Disables lightmap support in this shader (makes a shader smaller)." ));
                _addShadow = GUILayout.Toggle( _addShadow, new GUIContent( "Advanced Shadow Pass", "Performs vertex transformations and clipping for the shadow pass, you need to use this if shadows do not display properly." ));

                _ignoreProjectors = GUILayout.Toggle( _ignoreProjectors, new GUIContent( "Ignore Projectors", "Ignores projector components, should be used if your doing custom vertex transformations or most transparency" ));
                _approxview = GUILayout.Toggle( _approxview, new GUIContent( "Approximate View", "Computes normalized view direction per-vertex instead of per-pixel, for shaders that need it. This is faster, but view direction is not entirely correct when camera gets close to surface." ));
                _halfasview = GUILayout.Toggle( _halfasview, new GUIContent( "Half As View", "Pass half-direction vector into the lighting function instead of view-direction. Half-direction will be computed and normalized per vertex. This is faster, but not entirely correct." ));
                _noForwardAdd = GUILayout.Toggle( _noForwardAdd, new GUIContent( "Disable Forward Add", "Disables Forward rendering additive pass. This makes the shader support one full directional light, with all other lights computed per-vertex/SH. Makes shaders smaller as well." ));
            }

            GUILayout.Space( 8 );
            _showFogSettings = EditorGUILayout.Foldout( _showFogSettings, "Fog Settings" );
            if( _showFogSettings )
            {
                _fogModeOverride = EditorGUILayout.BeginToggleGroup( "Fog Mode Override", _fogModeOverride );
                var fogModeContent = new GUIContent("Fog Mode","The type of fog to use");
                _fogMode = (FogMode)EditorGUILayout.EnumPopup( fogModeContent, _fogMode );

                if( _fogMode == FogMode.Linear )
                {
                    _fogNearLinear.Value = EditorGUILayout.FloatField( "Near Linear Range:", _fogNearLinear );
                    _fogFarLinear.Value = EditorGUILayout.FloatField( "Far Linear Range:", _fogFarLinear );
                }
                EditorGUILayout.EndToggleGroup();

                _fogColorOverride = EditorGUILayout.BeginToggleGroup( "Fog Color Override", _fogColorOverride );
                _fogColor.Value = EditorGUILayout.ColorField("Fog Color:", _fogColor );
                EditorGUILayout.EndToggleGroup();

                _fogDensityOverride = EditorGUILayout.BeginToggleGroup( "Fog Density Override", _fogDensityOverride );
                _fogDensity.Value = EditorGUILayout.FloatField( "Fog Density:", _fogDensity );
                EditorGUILayout.EndToggleGroup();
            }
        }
 public static RenderStateDescriptor ZTest(ZTest value) => new RenderStateDescriptor
 {
     type = RenderStateType.ZTest, value = $"ZTest {value}"
 };
コード例 #16
0
        public void gh_937()
        {
            #region doc_learn_database
            // Note: this example uses a System.Data.DataTable to represent input data,
            // but note that this is not required. The data could have been represented
            // as jagged double matrices (double[][]) directly.

            // If you have to handle heterogeneus data in your application, such as user records
            // in a database, this data is best represented within the framework using a .NET's
            // DataTable object. In order to try to learn a classification or regression model
            // using this datatable, first we will need to convert the table into a representation
            // that the machine learning model can understand. Such representation is quite often,
            // a matrix of doubles (double[][]).
            var data = new DataTable("Customer Revenue Example");

            data.Columns.Add("Day", "CustomerId", "Time (hour)", "Weather", "Revenue");
            data.Rows.Add("D1", 0, 8, "Sunny", 101.2);
            data.Rows.Add("D2", 1, 10, "Sunny", 24.1);
            data.Rows.Add("D3", 2, 10, "Rain", 107);
            data.Rows.Add("D4", 3, 16, "Rain", 223);
            data.Rows.Add("D5", 4, 15, "Rain", 1);
            data.Rows.Add("D6", 5, 20, "Rain", 42);
            data.Rows.Add("D7", 6, 12, "Cloudy", 123);
            data.Rows.Add("D8", 7, 12, "Sunny", 64);

            // One way to perform this conversion is by using a Codification filter. The Codification
            // filter can take care of converting variables that actually denote symbols (i.e. the
            // weather in the example above) into representations that make more sense given the assumption
            // of a real vector-based classifier.

            // Create a codification codebook
            var codebook = new Codification()
            {
                { "Weather", CodificationVariable.Categorical },
                { "Time (hour)", CodificationVariable.Continuous },
                { "Revenue", CodificationVariable.Continuous },
            };

            // Learn from the data
            codebook.Learn(data);

            // Now, we will use the codebook to transform the DataTable into double[][] vectors. Due
            // the way the conversion works, we can end up with more columns in your output vectors
            // than the ones started with. If you would like more details about what those columns
            // represent, you can pass then as 'out' parameters in the methods that follow below.
            string[] inputNames;  // (note: if you do not want to run this example yourself, you
            string   outputName;  // can see below the new variable names that will be generated)

            // Now, we can translate our training data into integer symbols using our codebook:
            double[][] inputs  = codebook.Apply(data, "Weather", "Time (hour)").ToJagged(out inputNames);
            double[]   outputs = codebook.Apply(data, "Revenue").ToVector(out outputName);
            // (note: the Apply method transform a DataTable into another DataTable containing the codified
            //  variables. The ToJagged and ToVector methods are then used to transform those tables into
            //  double[][] matrices and double[] vectors, respectively.

            // If we would like to learn a linear regression model for this data, there are two possible
            // ways depending on which aspect of the linear regression we are interested the most. If we
            // are interested in interpreting the linear regression, performing hypothesis tests with the
            // coefficients and performing an actual _linear regression analysis_, then we can use the
            // MultipleLinearRegressionAnalysis class for this. If however we are only interested in using
            // the learned model directly to predict new values for the dataset, then we could be using the
            // MultipleLinearRegression and OrdinaryLeastSquares classes directly instead.

            // This example deals with the former case. For the later, please see the documentation page
            // for the MultipleLinearRegression class.

            // We can create a new multiple linear analysis for the variables
            var mlra = new MultipleLinearRegressionAnalysis(intercept: true)
            {
                // We can also inform the names of the new variables that have been created by the
                // codification filter. Those can help in the visualizing the analysis once it is
                // data-bound to a visual control such a Windows.Forms.DataGridView or WPF DataGrid:

                Inputs = inputNames, // will be { "Weather: Sunny", "Weather: Rain, "Weather: Cloudy", "Time (hours)" }
                Output = outputName  // will be "Revenue"
            };

            // To overcome linear dependency errors
            mlra.OrdinaryLeastSquares.IsRobust = true;

            // Compute the analysis and obtain the estimated regression
            MultipleLinearRegression regression = mlra.Learn(inputs, outputs);

            // And then predict the label using
            double predicted = mlra.Transform(inputs[0]); // result will be ~72.3

            // Because we opted for doing a MultipleLinearRegressionAnalysis instead of a simple
            // linear regression, we will have further information about the regression available:
            int    inputCount       = mlra.NumberOfInputs;    // should be 4
            int    outputCount      = mlra.NumberOfOutputs;   // should be 1
            double r2               = mlra.RSquared;          // should be 0.12801838425195311
            AnovaSourceCollection a = mlra.Table;             // ANOVA table (bind to a visual control for quick inspection)
            double[][]            h = mlra.InformationMatrix; // should contain Fisher's information matrix for the problem
            ZTest z = mlra.ZTest;                             // should be 0 (p=0.999, non-significant)
            #endregion

            Assert.AreEqual(72.279574468085144d, predicted, 1e-8);
            Assert.AreEqual(4, inputCount, 1e-8);
            Assert.AreEqual(1, outputCount, 1e-8);
            Assert.AreEqual(0.12801838425195311, r2, 1e-8);
            Assert.AreEqual(0.11010987669344097, a[0].Statistic, 1e-8);

            string     str       = h.ToCSharp();
            double[][] expectedH = new double[][]
            {
                new double[] { 0.442293243337911, -0.069833718526197, -0.228692384542512, -0.0141758263063635, 0.143767140269202 },
                new double[] { -0.0698337185261971, 0.717811616891116, -0.112258662892007, -0.0655549422852099, 0.535719235472913 },
                new double[] { -0.228692384542512, -0.112258662892007, 0.717434922237013, -0.0232803210243207, 0.376483874802496 },
                new double[] { -0.0141758263063635, -0.0655549422852099, -0.0232803210243207, 0.0370082984668314, -0.103011089615894 },
                new double[] { 0.143767140269202, 0.535719235472913, 0.376483874802496, -0.103011089615894, 1.05597025054461 }
            };

            Assert.IsTrue(expectedH.IsEqual(h, 1e-8));
            Assert.AreEqual(0, z.Statistic, 1e-8);
            Assert.AreEqual(1, z.PValue, 1e-8);
        }
コード例 #17
0
ファイル: ShaderSettings.cs プロジェクト: belzecue/SSE
        //property.Expanded =  EditorGUILayout.Foldout( property.Expanded, property.GetPropertyType().PropertyTypeString() );

        public void Draw()
        {
            var shaderNameContent = new GUIContent(
                "Shader Name",
                "Name for shader. Includes the hierarchy listing, that is, MyShaders/Shader will be in a folder called \"MyShaders\" in the shader selection dropdown. Also used when referring to fallback shaders.");

            var oldColor = GUI.color;

            if (string.IsNullOrEmpty(_shaderName))
            {
                GUI.color = Color.red;
            }
            _shaderName.Value = EditorGUILayout.TextField(shaderNameContent, _shaderName.Value);
            GUI.color         = oldColor;

            var shaderFallbackContent = new GUIContent(
                "Shader Fallback",
                "Fallback shader to use in case this shader can not be used.");

            _shaderFallback.Value = EditorGUILayout.TextField(shaderFallbackContent, _shaderFallback.Value);

            var targetContent = new GUIContent("Shader Model", "Requires more recent hardware to use the shader, but allows for more instructions, texture reads, and more input information.");

            _shaderTarget = (ShaderTarget)EditorGUILayout.EnumPopup(targetContent, _shaderTarget);

            var excludePathContent = new GUIContent("Exclude Path", "Exclude a renderpath from shader generation");

            _excludePath = (ExcludePath)EditorGUILayout.EnumPopup(excludePathContent, _excludePath);

#if UNITY_5_3_OR_NEWER
            var shaderTypeContent = new GUIContent("Shader Type", "You can select Physically Based Rendering after Unity 5.3");
            var currentshaderType = _shaderType;
            _shaderType = (ShaderType)EditorGUILayout.EnumPopup(shaderTypeContent, currentshaderType);
            if ((currentshaderType != _shaderType) && (OnChangeShaderType != null))
            {
                OnChangeShaderType();
            }
#endif

            GUILayout.Space(8);
            _showQueueSettings = EditorGUILayout.Foldout(_showQueueSettings, "Queue Settings");
            if (_showQueueSettings)
            {
                var renderTypeContent = new GUIContent("Render Type", "This is the rendertype tag inserted into the shader. Can be used for shader replace");
                _renderType = (RenderType)EditorGUILayout.EnumPopup(renderTypeContent, _renderType);

                if (_renderType == RenderType.Custom)
                {
                    _renderTypeCustom.Value = EditorGUILayout.TextField("Custom Type", _renderTypeCustom.Value);
                }

                var queueContent = new GUIContent("Render Queue", "The render queue that this material will be put in");
                _queue = (Queue)EditorGUILayout.EnumPopup(queueContent, _queue);

                var offContent = new GUIContent(
                    "Queue Offset",
                    "Offset for drawing. Used to ensure some things draw before or after others, it specifically is an offset from the given queue- That is to say, you won't have a transparent object draw before an opaque object (or similar) due to this offset.");
                _queueAdjust = EditorGUILayout.IntSlider(offContent, _queueAdjust.Value, -100, 100);
            }

            GUILayout.Space(8);
            _showCullingAndDepthSettings = EditorGUILayout.Foldout(_showCullingAndDepthSettings, "Culling and Depth Settings");
            if (_showCullingAndDepthSettings)
            {
                var zWriteContent = new GUIContent("Write Depth", "Depth is considered when testing other objects. Disable for certain effects, like letting other things draw over yourself, or for speed on most overlays.");
                _zWrite = (ZWrite)EditorGUILayout.EnumPopup(zWriteContent, _zWrite);

                var cullModeContent = new GUIContent("CullMode", "Select back / forward to clip backwards facing polygons");
                _cullMode = (CullMode)EditorGUILayout.EnumPopup(cullModeContent, _cullMode);

                var zTestContent = new GUIContent("ZTest", "Select Z-Test Value");
                _zTest = (ZTest)EditorGUILayout.EnumPopup(zTestContent, _zTest);

                var enableLODContent = new GUIContent("Enable LOD", "Enable Shader LOD scaling");
                _enableLOD = EditorGUILayout.BeginToggleGroup(enableLODContent, _enableLOD);
                _lod       = EditorGUILayout.IntSlider("LOD", _lod, 0, 1000);
                EditorGUILayout.EndToggleGroup();
            }

            GUILayout.Space(8);
            _showBlending = EditorGUILayout.Foldout(_showBlending, "Blending Settings");
            if (_showBlending)
            {
                var blendingTypeContent = new GUIContent("Blend Type", "Use a build in blend mode or a custom blend mode");
                _blending = (BlendingType)EditorGUILayout.EnumPopup(blendingTypeContent, _blending);

                if (CustomBlendingEnabled())
                {
                    var srcBlendContent = new GUIContent("Src Blend Mode", "How the source channel of blending is used");
                    _srcBlend = (BlendingMode)EditorGUILayout.EnumPopup(srcBlendContent, _srcBlend);

                    var dstBlendContent = new GUIContent("Dst Blend Mode", "How the destination channel of blending is used");
                    _dstBlend = (BlendingMode)EditorGUILayout.EnumPopup(dstBlendContent, _dstBlend);
                }
            }

            GUILayout.Space(8);
            _showColorAndLighting = EditorGUILayout.Foldout(_showColorAndLighting, "Color And Lighting Settings");
            if (_showColorAndLighting)
            {
                GUILayout.BeginHorizontal();
                GUILayout.Label("Color Mask:", GUILayout.ExpandWidth(false));
                _colorMaskR.Value = EditorExtensions.ToggleButton(_colorMaskR.Value, "R", "Mask R Channel");
                _colorMaskG.Value = EditorExtensions.ToggleButton(_colorMaskG.Value, "G", "Mask G Channel");
                _colorMaskB.Value = EditorExtensions.ToggleButton(_colorMaskB.Value, "B", "Mask B Channel");
                _colorMaskA.Value = EditorExtensions.ToggleButton(_colorMaskA.Value, "A", "Mask A Channel");
                GUILayout.EndHorizontal();

                _dualForward        = GUILayout.Toggle(_dualForward, new GUIContent("Forward Dual Lightmaps", "Use dual lightmaps in the forward rendering path"));
                _fullForwardShadows = GUILayout.Toggle(_fullForwardShadows, new GUIContent("Forward Full Shadows", "Support all shadow types in Forward rendering path."));
                _softVegetation     = GUILayout.Toggle(_softVegetation, new GUIContent("Soft Vegetation", "Makes the surface shader only be rendered when Soft Vegetation is on."));
                _noAmbient          = GUILayout.Toggle(_noAmbient, new GUIContent("No Ambient", "Do not apply any ambient lighting or spherical harmonics lights."));
                _noLightmap         = GUILayout.Toggle(_noLightmap, new GUIContent("No Lightmaps", "Disables lightmap support in this shader (makes a shader smaller)."));
                _addShadow          = GUILayout.Toggle(_addShadow, new GUIContent("Advanced Shadow Pass", "Performs vertex transformations and clipping for the shadow pass, you need to use this if shadows do not display properly."));

                _ignoreProjectors = GUILayout.Toggle(_ignoreProjectors, new GUIContent("Ignore Projectors", "Ignores projector components, should be used if your doing custom vertex transformations or most transparency"));
                _approxview       = GUILayout.Toggle(_approxview, new GUIContent("Approximate View", "Computes normalized view direction per-vertex instead of per-pixel, for shaders that need it. This is faster, but view direction is not entirely correct when camera gets close to surface."));
                _halfasview       = GUILayout.Toggle(_halfasview, new GUIContent("Half As View", "Pass half-direction vector into the lighting function instead of view-direction. Half-direction will be computed and normalized per vertex. This is faster, but not entirely correct."));
                _noForwardAdd     = GUILayout.Toggle(_noForwardAdd, new GUIContent("Disable Forward Add", "Disables Forward rendering additive pass. This makes the shader support one full directional light, with all other lights computed per-vertex/SH. Makes shaders smaller as well."));
            }

            GUILayout.Space(8);
            _showFogSettings = EditorGUILayout.Foldout(_showFogSettings, "Fog Settings");
            if (_showFogSettings)
            {
                _fogModeOverride = EditorGUILayout.BeginToggleGroup("Fog Mode Override", _fogModeOverride);
                var fogModeContent = new GUIContent("Fog Mode", "The type of fog to use");
                _fogMode = (FogMode)EditorGUILayout.EnumPopup(fogModeContent, _fogMode);

                if (_fogMode == FogMode.Linear)
                {
                    _fogNearLinear.Value = EditorGUILayout.FloatField("Near Linear Range:", _fogNearLinear);
                    _fogFarLinear.Value  = EditorGUILayout.FloatField("Far Linear Range:", _fogFarLinear);
                }
                EditorGUILayout.EndToggleGroup();

                _fogColorOverride = EditorGUILayout.BeginToggleGroup("Fog Color Override", _fogColorOverride);
                _fogColor.Value   = EditorGUILayout.ColorField("Fog Color:", _fogColor);
                EditorGUILayout.EndToggleGroup();

                _fogDensityOverride = EditorGUILayout.BeginToggleGroup("Fog Density Override", _fogDensityOverride);
                _fogDensity.Value   = EditorGUILayout.FloatField("Fog Density:", _fogDensity);
                EditorGUILayout.EndToggleGroup();
            }
        }
コード例 #18
0
        public void ComputeTest2()
        {
            // Consider the following data. An experimenter would
            // like to infer a relationship between two variables
            // A and B and a corresponding outcome variable R.

            double[][] example =
            {
                //                A    B      R
                new double[] { 6.41, 10.11, 26.1 },
                new double[] { 6.61, 22.61, 33.8 },
                new double[] { 8.45, 11.11, 52.7 },
                new double[] { 1.22, 18.11, 16.2 },
                new double[] { 7.42, 12.81, 87.3 },
                new double[] { 4.42, 10.21, 12.5 },
                new double[] { 8.61, 11.94, 77.5 },
                new double[] { 1.73, 13.13, 12.1 },
                new double[] { 7.47, 17.11, 86.5 },
                new double[] { 6.11, 15.13, 62.8 },
                new double[] { 1.42, 16.11, 17.5 },
            };

            // For this, we first extract the input and output
            // pairs. The first two columns have values for the
            // input variables, and the last for the output:

            double[][] inputs = example.GetColumns(0, 1);
            double[]   output = example.GetColumn(2);

            // Next, we can create a new multiple linear regression for the variables
            var regression = new MultipleLinearRegressionAnalysis(inputs, output, intercept: true);

            regression.Compute(); // compute the analysis

            // Now we can show a summary of analysis
            // Accord.Controls.DataGridBox.Show(regression.Coefficients);

            // We can also show a summary ANOVA
            // Accord.Controls.DataGridBox.Show(regression.Table);


            // And also extract other useful information, such
            // as the linear coefficients' values and std errors:
            double[] coef = regression.CoefficientValues;
            double[] stde = regression.StandardErrors;

            // Coefficients of performance, such as r²
            double rsquared = regression.RSquared;

            // Hypothesis tests for the whole model
            ZTest ztest = regression.ZTest;
            FTest ftest = regression.FTest;

            // and for individual coefficients
            TTest ttest0 = regression.Coefficients[0].TTest;
            TTest ttest1 = regression.Coefficients[1].TTest;

            // and also extract confidence intervals
            DoubleRange ci = regression.Coefficients[0].Confidence;

            Assert.AreEqual(3, coef.Length);
            Assert.AreEqual(8.7405051051757816, coef[0]);
            Assert.AreEqual(1.1198079243314365, coef[1], 1e-10);
            Assert.AreEqual(-19.604474518407862, coef[2], 1e-10);
            Assert.IsFalse(coef.HasNaN());

            Assert.AreEqual(2.375916659234715, stde[0], 1e-10);
            Assert.AreEqual(1.7268508921418664, stde[1], 1e-10);
            Assert.AreEqual(30.989640986710953, stde[2], 1e-10);
            Assert.IsFalse(coef.HasNaN());

            Assert.AreEqual(0.62879941171298936, rsquared);

            Assert.AreEqual(0.99999999999999822, ztest.PValue);
            Assert.AreEqual(0.018986050133298293, ftest.PValue, 1e-10);

            Assert.AreEqual(0.0062299844256985537, ttest0.PValue);
            Assert.AreEqual(0.53484850318449118, ttest1.PValue, 1e-14);
            Assert.IsFalse(Double.IsNaN(ttest1.PValue));

            Assert.AreEqual(3.2616314640800566, ci.Min);
            Assert.AreEqual(14.219378746271506, ci.Max);
        }
コード例 #19
0
        /// <summary>
        ///   Computes the Multiple Linear Regression Analysis.
        /// </summary>
        ///
        public void Compute()
        {
            int n = inputData.Length;
            int p = inputCount;

            SSt = SSe = outputMean = 0.0;

            // Compute the regression
            double[,] informationMatrix;
            regression.Regress(inputData, outputData,
                               out informationMatrix);


            // Calculate mean of the expected outputs
            for (int i = 0; i < outputData.Length; i++)
            {
                outputMean += outputData[i];
            }
            outputMean /= outputData.Length;

            // Calculate actual outputs (results)
            results = new double[inputData.Length];
            for (int i = 0; i < inputData.Length; i++)
            {
                results[i] = regression.Compute(inputData[i]);
            }

            // Calculate SSe and SSt
            for (int i = 0; i < inputData.Length; i++)
            {
                double d;

                d    = outputData[i] - results[i];
                SSe += d * d;

                d    = outputData[i] - outputMean;
                SSt += d * d;
            }

            // Calculate SSr
            SSr = SSt - SSe;

            // Calculate R-Squared
            rSquared = (SSt != 0) ? 1.0 - (SSe / SSt) : 1.0;

            // Calculated Adjusted R-Squared
            if (rSquared == 1)
            {
                rAdjusted = 1;
            }
            else
            {
                if (n - p == 1)
                {
                    rAdjusted = double.NaN;
                }
                else
                {
                    rAdjusted = 1.0 - (1.0 - rSquared) * ((n - 1.0) / (n - p - 1.0));
                }
            }

            // Calculate Degrees of Freedom
            DFr = p;
            DFe = n - (p + 1);
            DFt = DFr + DFe;

            // Calculate Sum of Squares Mean
            MSe = SSe / DFe;
            MSr = SSr / DFr;
            MSt = SSt / DFt;

            // Calculate the F statistic
            ftest    = new FTest(MSr / MSe, DFr, DFe);
            stdError = Math.Sqrt(MSe);


            // Create the ANOVA table
            List <AnovaVariationSource> table = new List <AnovaVariationSource>();

            table.Add(new AnovaVariationSource(this, "Regression", SSr, DFr, MSr, ftest));
            table.Add(new AnovaVariationSource(this, "Error", SSe, DFe, MSe, null));
            table.Add(new AnovaVariationSource(this, "Total", SSt, DFt, MSt, null));
            this.anovaTable = new AnovaSourceCollection(table);


            // Compute coefficient standard errors;
            standardErrors = new double[coefficientCount];
            for (int i = 0; i < standardErrors.Length; i++)
            {
                standardErrors[i] = Math.Sqrt(MSe * informationMatrix[i, i]);
            }


            // Compute coefficient tests
            for (int i = 0; i < regression.Coefficients.Length; i++)
            {
                double tStatistic = regression.Coefficients[i] / standardErrors[i];

                ttests[i] = new TTest(estimatedValue: regression.Coefficients[i],
                                      standardError: standardErrors[i], degreesOfFreedom: DFe);

                ftests[i] = new FTest(tStatistic * tStatistic, 1, DFe);

                confidences[i] = ttests[i].GetConfidenceInterval(confidencePercent);
            }


            // Compute model performance tests
            ttest         = new TTest(results, outputMean);
            ztest         = new ZTest(results, outputMean);
            chiSquareTest = new ChiSquareTest(outputData, results, n - p - 1);
        }
コード例 #20
0
        private void compute(double[][] x, double[] y)
        {
            int n = x.Length;
            int p = NumberOfInputs;

            SSt             = 0;
            SSe             = 0;
            outputMean      = 0.0;
            NumberOfSamples = x.Length;

            // Compute the regression
            OrdinaryLeastSquares.Token = Token;
            regression        = OrdinaryLeastSquares.Learn(x, y);
            informationMatrix = OrdinaryLeastSquares.GetInformationMatrix();

            // Calculate mean of the expected outputs
            outputMean = y.Mean();

            // Calculate actual outputs (results)
#pragma warning disable 612, 618
            results = regression.Transform(x);

            // Calculate SSe and SSt
            for (int i = 0; i < x.Length; i++)
            {
                double d;
                d    = y[i] - results[i];
                SSe += d * d;

                d    = y[i] - outputMean;
                SSt += d * d;
            }


            // Calculate SSr
            SSr = SSt - SSe;

            // Calculate R-Squared
            rSquared = (SSt != 0) ? 1.0 - (SSe / SSt) : 1.0;

            // Calculated Adjusted R-Squared
            if (rSquared == 1)
            {
                rAdjusted = 1;
            }
            else
            {
                if (n - p == 1)
                {
                    rAdjusted = double.NaN;
                }
                else
                {
                    rAdjusted = 1.0 - (1.0 - rSquared) * ((n - 1.0) / (n - p - 1.0));
                }
            }

            // Calculate Degrees of Freedom
            DFr = p;
            DFe = n - (p + 1);
            DFt = DFr + DFe;

            // Calculate Sum of Squares Mean
            MSe = SSe / DFe;
            MSr = SSr / DFr;
            MSt = SSt / DFt;

            // Calculate the F statistic
            ftest    = new FTest(MSr / MSe, DFr, DFe);
            stdError = Math.Sqrt(MSe);

            // Create the ANOVA table
            List <AnovaVariationSource> table = new List <AnovaVariationSource>();
            table.Add(new AnovaVariationSource(this, "Regression", SSr, DFr, MSr, ftest));
            table.Add(new AnovaVariationSource(this, "Error", SSe, DFe, MSe, null));
            table.Add(new AnovaVariationSource(this, "Total", SSt, DFt, MSt, null));
            this.anovaTable = new AnovaSourceCollection(table);

            // Compute coefficient standard errors;
            standardErrors = new double[NumberOfInputs + 1];
            for (int i = 0; i < informationMatrix.Length; i++)
            {
                standardErrors[i] = Math.Sqrt(MSe * informationMatrix[i][i]);
            }

            // Compute coefficient tests
            for (int i = 0; i < CoefficientValues.Length; i++)
            {
                double tStatistic = CoefficientValues[i] / standardErrors[i];

                ttests[i] = new TTest(estimatedValue: CoefficientValues[i],
                                      standardError: standardErrors[i], degreesOfFreedom: DFe);

                ftests[i] = new FTest(tStatistic * tStatistic, 1, DFe);

                confidences[i] = ttests[i].GetConfidenceInterval(confidencePercent);
            }


            // Compute model performance tests
            ttest         = new TTest(results, outputMean);
            ztest         = new ZTest(results, outputMean);
            chiSquareTest = new ChiSquareTest(y, results, n - p - 1);
#pragma warning restore 612, 618
        }
コード例 #21
0
 public Command() // default
 {
     ZWrite = ZWrite.Off;
     ZTest  = ZTest.LEqual;
     Cull   = Cull.Back;  // Don’t render polygons that are facing away from the viewer
 }