//************************************************************************************** /// <summary> /// Returns calculated parameters. /// </summary> /// <param name="iCurrentPrice">Last known price.</param> /// <param name="iCandlestickIndex">Provides index (current time) for each candlestick list. If this value is set to null, the most recent entry will be used.</param> /// <param name="iCandlesticks">Maximum amount of daily candlesticks: 270; 12H: 25; 6H: 50; 3H: 100; 2H: 150; 1H: 300; 30m: 600; 15m: 0; 5m: 0; 1m:0</param> public static float[] CalculateParameters(List <ClassifierParameter> iParameters, CandlestickCollection iCandlesticks, Candlestick.Period iPeriod, float iCurrentPrice, CandlestickIndexCollection iCandlestickIndex) { var candlesticks = iCandlesticks[iPeriod]; int candlestickIndex = iCandlestickIndex == null ? candlesticks.Count - 1 : iCandlestickIndex[iPeriod]; if (candlestickIndex >= iCandlesticks[iPeriod].Count) { throw new Exception("Candlestick index is higher than total number of candlesticks"); } // Make sure we have enough periods for (int i = 0; i < iParameters.Count; i++) { if (candlesticks.Count < iParameters[i].Periods + 10) { return(null); } } float[] results = new float[iParameters.Count]; var macd = new SortedDictionary <int, MACD>(); var macdCurrentPrice = new SortedDictionary <int, MACD>(); for (int i = 0; i < iParameters.Count; i++) { //int candlestickIndex = Candlestick.GetIndex(iParameters[i].Candlesticks, iCandlesticks, iCandlestickIndex); int periods = iParameters[i].Periods; switch (iParameters[i].Type) { case ParameterType.RSI: results[i] = TechnicalIndicators.CalculateRSI(candlesticks, periods, candlestickIndex); break; case ParameterType.RSIWithCurrentPrice: results[i] = TechnicalIndicators.CalculateRSI(candlesticks, periods, candlestickIndex, iCurrentPrice); break; case ParameterType.RSIInt: results[i] = TechnicalIndicators.RSIToInt(TechnicalIndicators.CalculateRSI(candlesticks, periods, candlestickIndex)); break; case ParameterType.RSIIntWithCurrentPrice: results[i] = TechnicalIndicators.RSIToInt(TechnicalIndicators.CalculateRSI(candlesticks, periods, candlestickIndex, iCurrentPrice)); break; case ParameterType.LastCriticalRSI: int startIndex = Math.Max(candlestickIndex - 270 + iParameters[i].Periods, iParameters[i].Periods); int lastCriticalRSI = 0; for (int k = startIndex; k >= candlestickIndex; k++) { lastCriticalRSI = TechnicalIndicators.CalculateLastCriticalRSI(TechnicalIndicators.RSIToInt(TechnicalIndicators.CalculateRSI(candlesticks, periods, k)), lastCriticalRSI); } results[i] = lastCriticalRSI; break; case ParameterType.LastCriticalRSIWithCurrentPrice: startIndex = Math.Max(candlestickIndex - 270 + iParameters[i].Periods, iParameters[i].Periods); lastCriticalRSI = 0; for (int k = startIndex; k >= candlestickIndex; k++) { lastCriticalRSI = TechnicalIndicators.CalculateLastCriticalRSI(TechnicalIndicators.RSIToInt(TechnicalIndicators.CalculateRSI(candlesticks, periods, k, iCurrentPrice)), lastCriticalRSI); } results[i] = lastCriticalRSI; break; case ParameterType.MeanToStd: results[i] = TechnicalIndicators.CalculateMeanToStdDev(candlesticks, periods, candlestickIndex, iCurrentPrice); break; case ParameterType.MeanToStdInt: results[i] = (float)Math.Floor(TechnicalIndicators.CalculateMeanToStdDev(candlesticks, periods, candlestickIndex, iCurrentPrice)); break; case ParameterType.LinearRegressionSlope: results[i] = (float)TechnicalIndicators.CalculateLinearRegressionSlope(candlesticks, periods, candlestickIndex); break; case ParameterType.LinearRegressionSlopePN: results[i] = TechnicalIndicators.CalculateLinearRegressionSlope(candlesticks, periods, candlestickIndex) >= 0 ? 1 : -1; break; case ParameterType.MarginSlope: results[i] = TechnicalIndicators.CalculateMarginSlope(candlesticks, periods, candlestickIndex, iCurrentPrice, iParameters[i].Attributes[0]); break; case ParameterType.MarginSlopePN: results[i] = TechnicalIndicators.CalculateMarginSlopePN(candlesticks, periods, candlestickIndex, iCurrentPrice, iParameters[i].Attributes[0]); break; case ParameterType.MACDSign: if (!macd.ContainsKey(periods)) { macd.Add(periods, TechnicalIndicators.CalculateMACD(candlesticks, periods, candlestickIndex)); } results[i] = macd[periods].Signal; break; case ParameterType.MACDSignWithCurrentPrice: if (!macdCurrentPrice.ContainsKey(periods)) { macdCurrentPrice.Add(periods, TechnicalIndicators.CalculateMACD(candlesticks, periods, candlestickIndex, iCurrentPrice)); } results[i] = macdCurrentPrice[periods].Signal; break; case ParameterType.MACDHist: if (!macd.ContainsKey(periods)) { macd.Add(periods, TechnicalIndicators.CalculateMACD(candlesticks, periods, candlestickIndex)); } results[i] = macd[periods].Hist; break; case ParameterType.MACDHistWithCurrentPrice: if (!macdCurrentPrice.ContainsKey(periods)) { macdCurrentPrice.Add(periods, TechnicalIndicators.CalculateMACD(candlesticks, periods, candlestickIndex, iCurrentPrice)); } results[i] = macdCurrentPrice[periods].Hist; break; case ParameterType.MACDHistChange: if (!macd.ContainsKey(periods)) { macd.Add(periods, TechnicalIndicators.CalculateMACD(candlesticks, periods, candlestickIndex)); } MACD macd90 = macd[periods]; MACD previousMACD90 = TechnicalIndicators.CalculateMACD(candlesticks, periods, candlestickIndex - 1); results[i] = previousMACD90.Hist == 0 ? 0 : (macd90.Hist / previousMACD90.Hist - 1); break; case ParameterType.MACDHistChangeWithCurrentPrice: if (!macdCurrentPrice.ContainsKey(periods)) { macdCurrentPrice.Add(periods, TechnicalIndicators.CalculateMACD(candlesticks, periods, candlestickIndex, iCurrentPrice)); } macd90 = macdCurrentPrice[periods]; previousMACD90 = TechnicalIndicators.CalculateMACD(candlesticks, periods, candlestickIndex - 1); results[i] = previousMACD90.Hist == 0 ? 0 : (macd90.Hist / previousMACD90.Hist - 1); break; case ParameterType.MACDHistSlope: float[] hist = new float[(int)iParameters[i].Attributes[0]]; for (int k = hist.Length - 1; k >= 0; k--) { hist[hist.Length - 1 - k] = TechnicalIndicators.CalculateMACD(candlesticks, periods, candlestickIndex - k).Hist; } results[i] = new LinearRegression(hist).Slope; break; case ParameterType.MACDHistPN: if (!macd.ContainsKey(periods)) { macd.Add(periods, TechnicalIndicators.CalculateMACD(candlesticks, periods, candlestickIndex)); } results[i] = macd[periods].Hist >= 0 ? 1 : -1; break; case ParameterType.MACDHistCrossed: if (!macd.ContainsKey(periods)) { macd.Add(periods, TechnicalIndicators.CalculateMACD(candlesticks, periods, candlestickIndex)); } macd90 = macd[periods]; previousMACD90 = TechnicalIndicators.CalculateMACD(candlesticks, periods, candlestickIndex - 1); if (macd90.Hist >= 0) { results[i] = previousMACD90.Hist >= 0 ? 0 : 1; } else { results[i] = previousMACD90.Hist < 0 ? 0 : -1; } break; case ParameterType.MACDHistDifference: if (!macd.ContainsKey(periods)) { macd.Add(periods, TechnicalIndicators.CalculateMACD(candlesticks, periods, candlestickIndex)); } macd90 = macd[periods]; previousMACD90 = TechnicalIndicators.CalculateMACD(candlesticks, periods, candlestickIndex - 1); results[i] = macd90.Hist - previousMACD90.Hist; break; case ParameterType.MACD: if (!macd.ContainsKey(periods)) { macd.Add(periods, TechnicalIndicators.CalculateMACD(candlesticks, periods, candlestickIndex)); } results[i] = macd[periods].Macd; break; case ParameterType.SlopesEMA: List <float> slopes = new List <float>(); for (int k = 0; k < iParameters[i].Attributes.Count; k++) { int periodLength = (int)iParameters[i].Attributes[k]; slopes.Add(new LinearRegression(TechnicalIndicators.CreatePriceArray(candlesticks, periodLength, candlestickIndex)).Slope); } results[i] = Utils.Last(Statistics.EMA(slopes.ToArray(), slopes.Count)); break; case ParameterType.ABAverage: results[i] = (TechnicalIndicators.CalculatePriceABaverage(candlesticks, periods, candlestickIndex, iCurrentPrice) ? 1.0f : 0.0f); break; case ParameterType.PercentMargin: results[i] = (TechnicalIndicators.CalculateOnePercentMargin(candlesticks, periods, candlestickIndex, iCurrentPrice, iParameters[i].Attributes[0]) ? 1.0f : 0.0f); break; case ParameterType.Classifier: results[i] = WekaClassifier.Find((int)iParameters[i].Attributes[0]).PredictDFP(iCandlesticks, iCurrentPrice, iCandlestickIndex); break; case ParameterType.ClassifierTargetChangeOldest: var classifier = WekaClassifier.Find((int)iParameters[i].Attributes[0]); var targetTime = iCandlesticks[WekaClassifier.kTrainingPeriod][iCandlestickIndex[WekaClassifier.kTrainingPeriod] - classifier.ProfitTime].StartTime; var pastIndex = new CandlestickIndexCollection(); for (int k = (int)WekaClassifier.kTrainingPeriod; k >= 0; k--) { pastIndex[k] = Math.Max(0, Math.Min(iCandlesticks[k].Count - 1, Candlestick.FindIndex(iCandlesticks[k], targetTime))); } var priceBefore = iCandlesticks[WekaClassifier.kTrainingPeriod][pastIndex[WekaClassifier.kTrainingPeriod]].MedianPrice; var wfp = classifier.PredictDFP(iCandlesticks, priceBefore, pastIndex); var targetPriceChange = (float)Math.Exp(wfp); results[i] = priceBefore * targetPriceChange / iCurrentPrice - 1.0f; break; } } return(results); }
//************************************************************************************** /// <summary> /// Starts optimal classifiers combination search. /// </summary> public static void Search(CandlestickCollection iHistoricalCandlesticks, List <WekaClassifier> iRootClassifiers) { var startTime = new DateTime(2002, 1, 1); var endTime = new DateTime(2019, 12, 23); while (true) { // Load enabled classifiers var enabledClassifiers = WekaClassifier.Find(iRootClassifiers, WekaClassifier.LoadEnabledClassifiers()); enabledClassifiers = enabledClassifiers.OrderBy(x => x.GetPrecision()).ToList(); // Performe historical simulation ImpliedSimulation.SimulateFullHistory(iHistoricalCandlesticks, enabledClassifiers, startTime, endTime, out var bestCorrelation, out var bestStdDev); var bestPrecision = CalculateAveragePrecision(enabledClassifiers) / 100.0f; var found = false; OutputNewBest(bestCorrelation, bestStdDev, bestPrecision); // Perform historical simulations with one classifier removed for (int i = 0; i < enabledClassifiers.Count; i++) { var currentClassifiers = WekaClassifier.Remove(enabledClassifiers, enabledClassifiers[i].ID); ImpliedSimulation.SimulateFullHistory(iHistoricalCandlesticks, currentClassifiers, startTime, endTime, out var currentCorrelation, out var currentStdDev, "WithoutClassifier" + enabledClassifiers[i].ID.ToString()); var currentPrecision = CalculateAveragePrecision(currentClassifiers) / 100.0f; if (IsBetterCombination(bestCorrelation, bestStdDev, bestPrecision, currentCorrelation, currentStdDev, currentPrecision)) { Console.WriteLine("Weak classifier has been found. Classifier ID: " + enabledClassifiers[i].ID); OutputNewBest(currentCorrelation, currentStdDev, currentPrecision); WekaClassifier.DisableClassifier(enabledClassifiers[i].ID); ClearOutputDirectory(); found = true; break; } } if (found) { continue; } // Create optional classifiers list var optionalClassifiers = new List <WekaClassifier>(); foreach (WekaClassifier cl in iRootClassifiers) { if (!enabledClassifiers.Contains(cl)) { optionalClassifiers.Add(cl); } } optionalClassifiers = optionalClassifiers.OrderBy(x => x.GetPrecision()).Reverse().ToList(); enabledClassifiers = enabledClassifiers.OrderBy(x => x.GetPrecision()).ToList(); // Perform historical simulations by upgrading existing classifiers for (int i = 0; i < enabledClassifiers.Count; i++) { for (int k = 0; k < optionalClassifiers.Count; k++) { if (optionalClassifiers[k].ProfitTime == enabledClassifiers[i].ProfitTime) { if (optionalClassifiers[k].GetPrecision() <= enabledClassifiers[i].GetPrecision()) { if (i < 3) { Console.WriteLine("Low precision classifier detected. Classifier ID: " + optionalClassifiers[k].ID); } continue; } var currentClassifiers = WekaClassifier.Remove(enabledClassifiers, enabledClassifiers[i].ID); currentClassifiers.Add(optionalClassifiers[k]); ImpliedSimulation.SimulateFullHistory(iHistoricalCandlesticks, currentClassifiers, startTime, endTime, out var currentCorrelation, out var currentStdDev, "ClassifierUpgrade_" + enabledClassifiers[i].ID.ToString() + "_To_" + optionalClassifiers[k].ID.ToString()); var currentPrecision = CalculateAveragePrecision(currentClassifiers) / 100.0f; if (IsBetterCombination(bestCorrelation, bestStdDev, bestPrecision, currentCorrelation, currentStdDev, currentPrecision)) { Console.WriteLine("Classifier upgrade has been found. Old classifier ID: " + enabledClassifiers[i].ID + ". New classifier ID:" + optionalClassifiers[k].ID); OutputNewBest(currentCorrelation, currentStdDev, currentPrecision); WekaClassifier.DisableClassifier(enabledClassifiers[i].ID); WekaClassifier.EnableClassifier(optionalClassifiers[k].ID); ClearOutputDirectory(); found = true; break; } else { optionalClassifiers[k].UnloadModel(); } } } if (found) { break; } } if (found) { continue; } // Perform historical simulations with one classifier added for (int i = 0; i < optionalClassifiers.Count; i++) { var currentClassifiers = new List <WekaClassifier>(enabledClassifiers); currentClassifiers.Add(optionalClassifiers[i]); ImpliedSimulation.SimulateFullHistory(iHistoricalCandlesticks, currentClassifiers, startTime, endTime, out var currentCorrelation, out var currentStdDev, "WithClassifier" + optionalClassifiers[i].ID.ToString()); var currentPrecision = CalculateAveragePrecision(currentClassifiers) / 100.0f; if (IsBetterCombination(bestCorrelation, bestStdDev, bestPrecision, currentCorrelation, currentStdDev, currentPrecision)) { Console.WriteLine("Strong classifier has been found. Classifier ID: " + optionalClassifiers[i].ID); OutputNewBest(currentCorrelation, currentStdDev, currentPrecision); WekaClassifier.EnableClassifier(optionalClassifiers[i].ID); ClearOutputDirectory(); found = true; break; } else { optionalClassifiers[i].UnloadModel(); } } if (found) { continue; } else { break; } } }