コード例 #1
0
ファイル: GraphicsBackend.cs プロジェクト: razluta/jazz2
        void IGraphicsBackend.BeginRendering(IDrawDevice device, VertexBatchStore vertexData, RenderOptions options, RenderStats stats)
        {
            DebugCheckOpenGLErrors();

            // ToDo: AA is disabled for now
            //this.CheckContextCaps();

            this.currentDevice = device;
            this.renderOptions = options;
            this.renderStats   = stats;

            // Upload all vertex data that we'll need during rendering
            if (vertexData != null)
            {
                this.perVertexTypeVBO.Count = Math.Max(this.perVertexTypeVBO.Count, vertexData.Batches.Count);
                for (int typeIndex = 0; typeIndex < vertexData.Batches.Count; typeIndex++)
                {
                    // Filter out unused vertex types
                    IVertexBatch vertexBatch = vertexData.Batches[typeIndex];
                    if (vertexBatch == null)
                    {
                        continue;
                    }
                    if (vertexBatch.Count == 0)
                    {
                        continue;
                    }

                    // Generate a VBO for this vertex type if it didn't exist yet
                    if (this.perVertexTypeVBO[typeIndex] == 0)
                    {
                        GL.GenBuffers(1, out this.perVertexTypeVBO.Data[typeIndex]);
                    }
                    GL.BindBuffer(BufferTarget.ArrayBuffer, this.perVertexTypeVBO[typeIndex]);

                    // Upload all data of this vertex type as a single block
                    int vertexDataLength = vertexBatch.Declaration.Size * vertexBatch.Count;
                    using (PinnedArrayHandle pinned = vertexBatch.Lock()) {
                        GL.BufferData(BufferTarget.ArrayBuffer, (IntPtr)vertexDataLength, IntPtr.Zero, BufferUsage.StreamDraw);
                        GL.BufferData(BufferTarget.ArrayBuffer, (IntPtr)vertexDataLength, pinned.Address, BufferUsage.StreamDraw);
                    }
                }
            }
            GL.BindBuffer(BufferTarget.ArrayBuffer, 0);

            // Prepare the target surface for rendering
            NativeRenderTarget.Bind(options.Target as NativeRenderTarget);

            // Determine the available size on the active rendering surface
            //Point2 availableSize;
            //if (NativeRenderTarget.BoundRT != null) {
            //    availableSize = new Point2(NativeRenderTarget.BoundRT.Width, NativeRenderTarget.BoundRT.Height);
            //} else {
            //    availableSize = this.externalBackbufferSize;
            //}

            Rect openGLViewport = options.Viewport;

            // Setup viewport and scissor rects
            GL.Viewport((int)openGLViewport.X, (int)openGLViewport.Y, (int)MathF.Ceiling(openGLViewport.W), (int)MathF.Ceiling(openGLViewport.H));
            GL.Scissor((int)openGLViewport.X, (int)openGLViewport.Y, (int)MathF.Ceiling(openGLViewport.W), (int)MathF.Ceiling(openGLViewport.H));

            // Clear buffers
            ClearBufferMask glClearMask = 0;
            ColorRgba       clearColor  = options.ClearColor;

            if ((options.ClearFlags & ClearFlag.Color) != ClearFlag.None)
            {
                glClearMask |= ClearBufferMask.ColorBufferBit;
            }
            if ((options.ClearFlags & ClearFlag.Depth) != ClearFlag.None)
            {
                glClearMask |= ClearBufferMask.DepthBufferBit;
            }
            GL.ClearColor(clearColor.R / 255.0f, clearColor.G / 255.0f, clearColor.B / 255.0f, clearColor.A / 255.0f);
            GL.ClearDepth(options.ClearDepth);
            GL.Clear(glClearMask);

            // Configure Rendering params
            if (options.RenderMode == RenderMatrix.ScreenSpace)
            {
                GL.Enable(EnableCap.ScissorTest);
                GL.Enable(EnableCap.DepthTest);
                GL.DepthFunc(DepthFunction.Always);
            }
            else
            {
                GL.Enable(EnableCap.ScissorTest);
                GL.Enable(EnableCap.DepthTest);
                GL.DepthFunc(DepthFunction.Lequal);
            }

            Matrix4 modelView  = options.ModelViewMatrix;
            Matrix4 projection = options.ProjectionMatrix;

            if (NativeRenderTarget.BoundRT != null)
            {
                modelView = Matrix4.CreateScale(new Vector3(1f, -1f, 1f)) * modelView;
                if (options.RenderMode == RenderMatrix.ScreenSpace)
                {
                    modelView = Matrix4.CreateTranslation(new Vector3(0f, -device.TargetSize.Y, 0f)) * modelView;
                }
            }

            // Convert matrices to float arrays
            GetArrayMatrix(ref modelView, ref modelViewData);
            GetArrayMatrix(ref projection, ref projectionData);

            // All EBOs can be used again
            lastUsedEBO = 0;
        }
コード例 #2
0
ファイル: DummyGraphicsBackend.cs プロジェクト: razluta/jazz2
 void IGraphicsBackend.BeginRendering(IDrawDevice device, VertexBatchStore vertexData, RenderOptions options, RenderStats stats)
 {
 }
コード例 #3
0
ファイル: VertexBatchStoreTest.cs プロジェクト: pyneer/case
        [Test] public void RentAndClear()
        {
            VertexBatchStore memory = new VertexBatchStore();

            // Repeatedly rent slices of varying types from memory
            {
                VertexSlice <VertexC1P3> slice = memory.Rent <VertexC1P3>(4);
                slice[0] = new VertexC1P3 {
                    Color = new ColorRgba(0)
                };
                slice[1] = new VertexC1P3 {
                    Color = new ColorRgba(1)
                };
                slice[2] = new VertexC1P3 {
                    Color = new ColorRgba(2)
                };
                slice[3] = new VertexC1P3 {
                    Color = new ColorRgba(3)
                };
            }
            {
                VertexSlice <VertexC1P3T2> slice = memory.Rent <VertexC1P3T2>(3);
                slice[0] = new VertexC1P3T2 {
                    Color = new ColorRgba(4)
                };
                slice[1] = new VertexC1P3T2 {
                    Color = new ColorRgba(5)
                };
                slice[2] = new VertexC1P3T2 {
                    Color = new ColorRgba(6)
                };
            }
            {
                VertexSlice <VertexC1P3> slice = memory.Rent <VertexC1P3>(2);
                slice[0] = new VertexC1P3 {
                    Color = new ColorRgba(7)
                };
                slice[1] = new VertexC1P3 {
                    Color = new ColorRgba(8)
                };
            }
            {
                VertexSlice <VertexC1P3> slice = memory.Rent <VertexC1P3>(1);
                slice[0] = new VertexC1P3 {
                    Color = new ColorRgba(9)
                };
            }

            // Assert correct storage property values
            Assert.AreEqual(
                1 + Math.Max(
                    VertexDeclaration.Get <VertexC1P3>().TypeIndex,
                    VertexDeclaration.Get <VertexC1P3T2>().TypeIndex),
                memory.TypeIndexCount);
            Assert.AreEqual(1, memory.GetBatchCount <VertexC1P3>());
            Assert.AreEqual(1, memory.GetBatchCount <VertexC1P3T2>());

            // Retrieve specific internal vertex arrays
            VertexBatch <VertexC1P3>   batchA    = memory.GetBatch <VertexC1P3>(0);
            VertexBatch <VertexC1P3T2> batchB    = memory.GetBatch <VertexC1P3T2>(0);
            RawList <VertexC1P3>       verticesA = batchA.Vertices;
            RawList <VertexC1P3T2>     verticesB = batchB.Vertices;

            // Assert that they contain all the data we submitted in the correct order
            Assert.AreEqual(7, batchA.Count);
            Assert.AreEqual(3, batchB.Count);
            Assert.AreEqual(7, verticesA.Count);
            Assert.AreEqual(3, verticesB.Count);

            Assert.AreEqual(new ColorRgba(0), verticesA[0].Color);
            Assert.AreEqual(new ColorRgba(1), verticesA[1].Color);
            Assert.AreEqual(new ColorRgba(2), verticesA[2].Color);
            Assert.AreEqual(new ColorRgba(3), verticesA[3].Color);

            Assert.AreEqual(new ColorRgba(4), verticesB[0].Color);
            Assert.AreEqual(new ColorRgba(5), verticesB[1].Color);
            Assert.AreEqual(new ColorRgba(6), verticesB[2].Color);

            Assert.AreEqual(new ColorRgba(7), verticesA[4].Color);
            Assert.AreEqual(new ColorRgba(8), verticesA[5].Color);
            Assert.AreEqual(new ColorRgba(9), verticesA[6].Color);

            // Clear all vertices
            memory.Clear();

            // Assert correct storage property values
            Assert.AreEqual(0, memory.TypeIndexCount);
            Assert.AreEqual(0, memory.GetBatchCount <VertexC1P3>());
            Assert.AreEqual(0, memory.GetBatchCount <VertexC1P3T2>());

            // Assert that the vertices are gone, but capacity isn't
            Assert.AreEqual(0, batchA.Count);
            Assert.AreEqual(0, batchB.Count);
            Assert.AreEqual(0, verticesA.Count);
            Assert.AreEqual(0, verticesB.Count);
            Assert.GreaterOrEqual(verticesA.Capacity, 7);
            Assert.GreaterOrEqual(verticesB.Capacity, 3);
        }
コード例 #4
0
ファイル: GraphicsBackend.cs プロジェクト: razluta/jazz2
        void IGraphicsBackend.BeginRendering(IDrawDevice device, VertexBatchStore vertexData, RenderOptions options, RenderStats stats)
        {
            DebugCheckOpenGLErrors();
            this.CheckContextCaps();

            this.currentDevice = device;
            this.renderOptions = options;
            this.renderStats   = stats;

            // Upload all vertex data that we'll need during rendering
            if (vertexData != null)
            {
                this.perVertexTypeVBO.Count = Math.Max(this.perVertexTypeVBO.Count, vertexData.Batches.Count);
                for (int typeIndex = 0; typeIndex < vertexData.Batches.Count; typeIndex++)
                {
                    // Filter out unused vertex types
                    IVertexBatch vertexBatch = vertexData.Batches[typeIndex];
                    if (vertexBatch == null)
                    {
                        continue;
                    }
                    if (vertexBatch.Count == 0)
                    {
                        continue;
                    }

                    // Generate a VBO for this vertex type if it didn't exist yet
                    if (this.perVertexTypeVBO[typeIndex] == 0)
                    {
                        GL.GenBuffers(1, out this.perVertexTypeVBO.Data[typeIndex]);
                    }
                    GL.BindBuffer(BufferTarget.ArrayBuffer, this.perVertexTypeVBO[typeIndex]);

                    // Upload all data of this vertex type as a single block
                    int vertexDataLength = vertexBatch.Declaration.Size * vertexBatch.Count;
                    using (PinnedArrayHandle pinned = vertexBatch.Lock())
                    {
                        GL.BufferData(BufferTarget.ArrayBuffer, (IntPtr)vertexDataLength, IntPtr.Zero, BufferUsageHint.StreamDraw);
                        GL.BufferData(BufferTarget.ArrayBuffer, (IntPtr)vertexDataLength, pinned.Address, BufferUsageHint.StreamDraw);
                    }
                }
            }
            GL.BindBuffer(BufferTarget.ArrayBuffer, 0);

            // Prepare the target surface for rendering
            NativeRenderTarget.Bind(options.Target as NativeRenderTarget);

            // Determine whether masked blending should use alpha-to-coverage mode
            if (this.msaaIsDriverDisabled)
            {
                this.useAlphaToCoverageBlend = false;
            }
            else if (NativeRenderTarget.BoundRT != null)
            {
                this.useAlphaToCoverageBlend = NativeRenderTarget.BoundRT.Samples > 0;
            }
            else if (this.activeWindow != null)
            {
                this.useAlphaToCoverageBlend = this.activeWindow.IsMultisampled;
            }
            else
            {
                this.useAlphaToCoverageBlend = this.defaultGraphicsMode.Samples > 0;
            }

            // Determine the available size on the active rendering surface
            Point2 availableSize;

            if (NativeRenderTarget.BoundRT != null)
            {
                availableSize = new Point2(NativeRenderTarget.BoundRT.Width, NativeRenderTarget.BoundRT.Height);
            }
            else if (this.activeWindow != null)
            {
                availableSize = new Point2(this.activeWindow.Width, this.activeWindow.Height);
            }
            else
            {
                availableSize = this.externalBackbufferSize;
            }

            // Translate viewport coordinates to OpenGL screen coordinates (bottom-left, rising), unless rendering
            // to a texture, which is laid out Duality-like (top-left, descending)
            Rect openGLViewport = options.Viewport;

            if (NativeRenderTarget.BoundRT == null)
            {
                openGLViewport.Y = (availableSize.Y - openGLViewport.H) - openGLViewport.Y;
            }

            // Setup viewport and scissor rects
            GL.Viewport((int)openGLViewport.X, (int)openGLViewport.Y, (int)MathF.Ceiling(openGLViewport.W), (int)MathF.Ceiling(openGLViewport.H));
            GL.Scissor((int)openGLViewport.X, (int)openGLViewport.Y, (int)MathF.Ceiling(openGLViewport.W), (int)MathF.Ceiling(openGLViewport.H));

            // Clear buffers
            ClearBufferMask glClearMask = 0;
            ColorRgba       clearColor  = options.ClearColor;

            if ((options.ClearFlags & ClearFlag.Color) != ClearFlag.None)
            {
                glClearMask |= ClearBufferMask.ColorBufferBit;
            }
            if ((options.ClearFlags & ClearFlag.Depth) != ClearFlag.None)
            {
                glClearMask |= ClearBufferMask.DepthBufferBit;
            }
            GL.ClearColor(clearColor.R / 255.0f, clearColor.G / 255.0f, clearColor.B / 255.0f, clearColor.A / 255.0f);
            GL.ClearDepth((double)options.ClearDepth);             // The "float version" is from OpenGL 4.1..
            GL.Clear(glClearMask);

            // Configure Rendering params
            if (options.RenderMode == RenderMatrix.ScreenSpace)
            {
                GL.Enable(EnableCap.ScissorTest);
                GL.Enable(EnableCap.DepthTest);
                GL.DepthFunc(DepthFunction.Always);
            }
            else
            {
                GL.Enable(EnableCap.ScissorTest);
                GL.Enable(EnableCap.DepthTest);
                GL.DepthFunc(DepthFunction.Lequal);
            }

            OpenTK.Matrix4 openTkModelView;
            Matrix4        modelView = options.ModelViewMatrix;

            GetOpenTKMatrix(ref modelView, out openTkModelView);

            GL.MatrixMode(MatrixMode.Modelview);
            GL.LoadMatrix(ref openTkModelView);

            OpenTK.Matrix4 openTkProjection;
            Matrix4        projection = options.ProjectionMatrix;

            GetOpenTKMatrix(ref projection, out openTkProjection);

            GL.MatrixMode(MatrixMode.Projection);
            GL.LoadMatrix(ref openTkProjection);

            if (NativeRenderTarget.BoundRT != null)
            {
                GL.Scale(1.0f, -1.0f, 1.0f);
                if (options.RenderMode == RenderMatrix.ScreenSpace)
                {
                    GL.Translate(0.0f, -device.TargetSize.Y, 0.0f);
                }
            }
        }
コード例 #5
0
ファイル: VertexBatchStoreTest.cs プロジェクト: pyneer/case
        [Test] public void MaxBatchSize()
        {
            VertexBatchStore memory = new VertexBatchStore(4);

            // Rent a few memory slices, but stay below the max batch size
            {
                VertexSlice <VertexC1P3> slice = memory.Rent <VertexC1P3>(2);
                slice[0] = new VertexC1P3 {
                    Color = new ColorRgba(0)
                };
                slice[1] = new VertexC1P3 {
                    Color = new ColorRgba(1)
                };
            }
            {
                VertexSlice <VertexC1P3> slice = memory.Rent <VertexC1P3>(1);
                slice[0] = new VertexC1P3 {
                    Color = new ColorRgba(2)
                };
            }

            // Assert that we only have one batch, with the correct contents
            Assert.AreEqual(1, memory.GetBatchCount <VertexC1P3>());
            Assert.AreEqual(0, memory.GetBatchCount <VertexC1P3T2>());

            VertexBatch <VertexC1P3> batchA    = memory.GetBatch <VertexC1P3>(0);
            RawList <VertexC1P3>     verticesA = batchA.Vertices;

            Assert.AreEqual(3, batchA.Count);
            Assert.AreEqual(new ColorRgba(0), verticesA[0].Color);
            Assert.AreEqual(new ColorRgba(1), verticesA[1].Color);
            Assert.AreEqual(new ColorRgba(2), verticesA[2].Color);

            // Rent a few more slices, this time exceeding max batch size
            {
                VertexSlice <VertexC1P3> slice = memory.Rent <VertexC1P3>(2);
                slice[0] = new VertexC1P3 {
                    Color = new ColorRgba(3)
                };
                slice[1] = new VertexC1P3 {
                    Color = new ColorRgba(4)
                };
            }
            {
                VertexSlice <VertexC1P3> slice = memory.Rent <VertexC1P3>(2);
                slice[0] = new VertexC1P3 {
                    Color = new ColorRgba(5)
                };
                slice[1] = new VertexC1P3 {
                    Color = new ColorRgba(6)
                };
            }

            // Assert that we now have two batches, each with the correct contents
            Assert.AreEqual(2, memory.GetBatchCount <VertexC1P3>());
            Assert.AreEqual(0, memory.GetBatchCount <VertexC1P3T2>());

            VertexBatch <VertexC1P3> batchB    = memory.GetBatch <VertexC1P3>(1);
            RawList <VertexC1P3>     verticesB = batchB.Vertices;

            Assert.AreEqual(3, batchA.Count);
            Assert.AreEqual(new ColorRgba(0), verticesA[0].Color);
            Assert.AreEqual(new ColorRgba(1), verticesA[1].Color);
            Assert.AreEqual(new ColorRgba(2), verticesA[2].Color);

            Assert.AreEqual(4, batchB.Count);
            Assert.AreEqual(new ColorRgba(3), verticesB[0].Color);
            Assert.AreEqual(new ColorRgba(4), verticesB[1].Color);
            Assert.AreEqual(new ColorRgba(5), verticesB[2].Color);
            Assert.AreEqual(new ColorRgba(6), verticesB[3].Color);

            // Clear all vertices
            memory.Clear();

            // Assert that the vertices are gone, but capacity isn't
            Assert.AreEqual(0, memory.GetBatchCount <VertexC1P3>());
            Assert.AreEqual(0, memory.GetBatchCount <VertexC1P3T2>());
            Assert.AreEqual(0, batchA.Count);
            Assert.AreEqual(0, batchB.Count);
            Assert.AreEqual(0, verticesA.Count);
            Assert.AreEqual(0, verticesB.Count);
            Assert.GreaterOrEqual(verticesA.Capacity, 3);
            Assert.GreaterOrEqual(verticesB.Capacity, 4);

            // Rent some vertices again
            memory.Rent <VertexC1P3>(3);
            memory.Rent <VertexC1P3>(4);

            // Assert that the same storage is re-used
            Assert.AreEqual(2, memory.GetBatchCount <VertexC1P3>());
            Assert.AreEqual(0, memory.GetBatchCount <VertexC1P3T2>());
            Assert.AreEqual(3, batchA.Count);
            Assert.AreEqual(4, batchB.Count);
            Assert.AreEqual(3, verticesA.Count);
            Assert.AreEqual(4, verticesB.Count);

            // Assert that we're getting an exception when attempting to rent a slice that is too large
            Assert.Throws <ArgumentException>(() => memory.Rent <VertexC1P3>(5));
        }