コード例 #1
0
ファイル: EigenOps_FDRM.cs プロジェクト: lulzzz/BraneCloud
        /**
         * <p>
         * Given matrix A and an eigen vector of A, compute the corresponding eigen value.  This is
         * the Rayleigh quotient.<br>
         * <br>
         * x<sup>T</sup>Ax / x<sup>T</sup>x
         * </p>
         *
         *
         * @param A Matrix. Not modified.
         * @param eigenVector An eigen vector of A. Not modified.
         * @return The corresponding eigen value.
         */
        public static float computeEigenValue(FMatrixRMaj A, FMatrixRMaj eigenVector)
        {
            float bottom = VectorVectorMult_FDRM.innerProd(eigenVector, eigenVector);
            float top    = VectorVectorMult_FDRM.innerProdA(eigenVector, A, eigenVector);

            return(top / bottom);
        }
コード例 #2
0
ファイル: EigenOps_FDRM.cs プロジェクト: lulzzz/BraneCloud
        /**
         * <p>
         * Given an eigenvalue it computes an eigenvector using inverse iteration:
         * <br>
         * for i=1:MAX {<br>
         *   (A - &mu;I)z<sup>(i)</sup> = q<sup>(i-1)</sup><br>
         *   q<sup>(i)</sup> = z<sup>(i)</sup> / ||z<sup>(i)</sup>||<br>
         * &lambda;<sup>(i)</sup> =  q<sup>(i)</sup><sup>T</sup> A  q<sup>(i)</sup><br>
         * }<br>
         * </p>
         * <p>
         * NOTE: If there is another eigenvalue that is very similar to the provided one then there
         * is a chance of it converging towards that one instead.  The larger a matrix is the more
         * likely this is to happen.
         * </p>
         * @param A Matrix whose eigenvector is being computed.  Not modified.
         * @param eigenvalue The eigenvalue in the eigen pair.
         * @return The eigenvector or null if none could be found.
         */
        public static FEigenpair computeEigenVector(FMatrixRMaj A, float eigenvalue)
        {
            if (A.numRows != A.numCols)
            {
                throw new ArgumentException("Must be a square matrix.");
            }

            FMatrixRMaj M = new FMatrixRMaj(A.numRows, A.numCols);

            FMatrixRMaj x = new FMatrixRMaj(A.numRows, 1);
            FMatrixRMaj b = new FMatrixRMaj(A.numRows, 1);

            CommonOps_FDRM.fill(b, 1);

            // perturb the eigenvalue slightly so that its not an exact solution the first time
//        eigenvalue -= eigenvalue*UtilEjml.F_EPS*10;

            float origEigenvalue = eigenvalue;

            SpecializedOps_FDRM.addIdentity(A, M, -eigenvalue);

            float threshold = NormOps_FDRM.normPInf(A) * UtilEjml.F_EPS;

            float prevError = float.MaxValue;
            bool  hasWorked = false;

            LinearSolverDense <FMatrixRMaj> solver = LinearSolverFactory_FDRM.linear(M.numRows);

            float perp = 0.0001f;

            for (int i = 0; i < 200; i++)
            {
                bool failed = false;
                // if the matrix is singular then the eigenvalue is within machine precision
                // of the true value, meaning that x must also be.
                if (!solver.setA(M))
                {
                    failed = true;
                }
                else
                {
                    solver.solve(b, x);
                }

                // see if solve silently failed
                if (MatrixFeatures_FDRM.hasUncountable(x))
                {
                    failed = true;
                }

                if (failed)
                {
                    if (!hasWorked)
                    {
                        // if it failed on the first trial try perturbing it some more
                        float val = i % 2 == 0 ? 1.0f - perp : 1.0f + perp;
                        // maybe this should be turn into a parameter allowing the user
                        // to configure the wise of each step

                        eigenvalue = origEigenvalue * (float)Math.Pow(val, i / 2 + 1);
                        SpecializedOps_FDRM.addIdentity(A, M, -eigenvalue);
                    }
                    else
                    {
                        // otherwise assume that it was so accurate that the matrix was singular
                        // and return that result
                        return(new FEigenpair(eigenvalue, b));
                    }
                }
                else
                {
                    hasWorked = true;

                    b.set(x);
                    NormOps_FDRM.normalizeF(b);

                    // compute the residual
                    CommonOps_FDRM.mult(M, b, x);
                    float error = NormOps_FDRM.normPInf(x);

                    if (error - prevError > UtilEjml.F_EPS * 10)
                    {
                        // if the error increased it is probably converging towards a different
                        // eigenvalue
//                    CommonOps.set(b,1);
                        prevError = float.MaxValue;
                        hasWorked = false;
                        float val = i % 2 == 0 ? 1.0f - perp : 1.0f + perp;
                        eigenvalue = origEigenvalue * (float)Math.Pow(val, 1);
                    }
                    else
                    {
                        // see if it has converged
                        if (error <= threshold || Math.Abs(prevError - error) <= UtilEjml.F_EPS)
                        {
                            return(new FEigenpair(eigenvalue, b));
                        }

                        // update everything
                        prevError  = error;
                        eigenvalue = VectorVectorMult_FDRM.innerProdA(b, A, b);
                    }

                    SpecializedOps_FDRM.addIdentity(A, M, -eigenvalue);
                }
            }

            return(null);
        }