public PrismaticJoint(PrismaticJointDef def) : base(def) { m_localAnchorA = def.localAnchorA; m_localAnchorB = def.localAnchorB; m_localXAxisA = Vector2.Normalize(def.localAxisA); m_localYAxisA = Vectex.Cross(1.0f, m_localXAxisA); m_referenceAngle = def.referenceAngle; m_impulse = Vector2.Zero; m_axialMass = 0.0f; MotorForce = 0.0f; m_lowerImpulse = 0.0f; m_upperImpulse = 0.0f; LowerLimit = def.lowerTranslation; UpperLimit = def.upperTranslation; m_maxMotorForce = def.maxMotorForce; m_motorSpeed = def.motorSpeed; IsLimitEnabled = def.enableLimit; IsMotorEnabled = def.enableMotor; m_translation = 0.0f; m_axis = Vector2.Zero; m_perp = Vector2.Zero; }
/// <summary> /// Get the current joint translation speed, usually in meters per second. /// </summary> public float JointSpeed() { Body b1 = m_bodyA; Body b2 = m_bodyB; Vector2 r1 = Vector2.Transform(m_localAnchorA - b1.GetLocalCenter(), b1.GetTransform().q); Vector2 r2 = Vector2.Transform(m_localAnchorB - b2.GetLocalCenter(), b2.GetTransform().q); Vector2 p1 = b1.m_sweep.c + r1; Vector2 p2 = b2.m_sweep.c + r2; Vector2 d = p2 - p1; Vector2 axis = b1.GetWorldVector(m_localXAxisA); Vector2 v1 = b1.m_linearVelocity; Vector2 v2 = b2.m_linearVelocity; float w1 = b1.m_angularVelocity; float w2 = b2.m_angularVelocity; return(Vector2.Dot(d, Vectex.Cross(w1, axis)) + Vector2.Dot(axis, v2 + Vectex.Cross(w2, r2) - v1 - Vectex.Cross(w1, r1))); }
public WheelJoint(WheelJointDef def) : base(def) { m_localAnchorA = def.localAnchorA; m_localAnchorB = def.localAnchorB; m_localXAxisA = def.localAxisA; m_localYAxisA = Vectex.Cross(1f, m_localXAxisA); m_mass = 0f; m_impulse = 0f; m_motorMass = 0f; m_motorImpulse = 0f; m_springMass = 0f; m_springImpulse = 0f; m_axialMass = 0f; m_lowerImpulse = 0f; m_upperImpulse = 0f; m_lowerTranslation = def.lowerTranslation; m_upperTranslation = def.upperTranslation; m_enableLimit = def.enableLimit; m_maxMotorTorque = def.maxMotorTorque; m_motorSpeed = def.motorSpeed; m_enableMotor = def.enableMotor; m_bias = 0f; m_gamma = 0f; m_ax = Vector2.Zero; m_ay = Vector2.Zero; if (def.frequencyHz.HasValue && def.dampingRatio.HasValue) { LinearStiffness(out def.stiffness, out def.damping, def.frequencyHz.Value, def.dampingRatio.Value, def.bodyA, def.bodyB); } m_stiffness = def.stiffness; m_damping = def.damping; }
public void WarmStart() { // Warm start. for (int i = 0; i < _count; ++i) { ContactVelocityConstraint vc = _velocityConstraints[i]; int indexA = vc.indexA; int indexB = vc.indexB; float mA = vc.invMassA; float iA = vc.invIA; float mB = vc.invMassB; float iB = vc.invIB; int pointCount = vc.pointCount; Vector2 vA = _velocities[indexA].v; float wA = _velocities[indexA].w; Vector2 vB = _velocities[indexB].v; float wB = _velocities[indexB].w; Vector2 normal = vc.normal; Vector2 tangent = Vectex.Cross(normal, 1.0f); for (int j = 0; j < pointCount; ++j) { VelocityConstraintPoint vcp = vc.points[j]; Vector2 P = vcp.normalImpulse * normal + vcp.tangentImpulse * tangent; wA -= iA * Vectex.Cross(vcp.rA, P); vA -= mA * P; wB += iB * Vectex.Cross(vcp.rB, P); vB += mB * P; } _velocities[indexA].v = vA; _velocities[indexA].w = wA; _velocities[indexB].v = vB; _velocities[indexB].w = wB; } }
public float GetJointLinearSpeed() { Body bA = m_bodyA; Body bB = m_bodyB; Vector2 rA = Vector2.Transform(m_localAnchorA - bA.m_sweep.localCenter, bA.m_xf.q); // Math.Mul(bA._xf.q, _localAnchorA - bA._sweep.localCenter); Vector2 rB = Vector2.Transform(m_localAnchorB - bB.m_sweep.localCenter, bB.m_xf.q); // Math.Mul(bB._xf.q, _localAnchorB - bB._sweep.localCenter); Vector2 p1 = bA.m_sweep.c + rA; Vector2 p2 = bB.m_sweep.c + rB; Vector2 d = p2 - p1; Vector2 axis = Vector2.Transform(m_localXAxisA, bA.m_xf.q); //Math.Mul(bA._xf.q, _localXAxisA); Vector2 vA = bA.m_linearVelocity; Vector2 vB = bB.m_linearVelocity; float wA = bA.m_angularVelocity; float wB = bB.m_angularVelocity; return(Vector2.Dot(d, Vectex.Cross(wA, axis)) + Vector2.Dot(axis, vB + Vectex.Cross(wB, rB) - vA - Vectex.Cross(wA, rA))); }
public bool SolveTOIPositionConstraints(int toiIndexA, int toiIndexB) { float minSeparation = 0.0f; for (int i = 0; i < _count; ++i) { ContactPositionConstraint pc = _positionConstraints[i]; int indexA = pc.indexA; int indexB = pc.indexB; Vector2 localCenterA = pc.localCenterA; Vector2 localCenterB = pc.localCenterB; int pointCount = pc.pointCount; float mA = 0.0f; float iA = 0.0f; if (indexA == toiIndexA || indexA == toiIndexB) { mA = pc.invMassA; iA = pc.invIA; } float mB = 0.0f; float iB = 0.0f; if (indexB == toiIndexA || indexB == toiIndexB) { mB = pc.invMassB; iB = pc.invIB; } Vector2 cA = _positions[indexA].c; float aA = _positions[indexA].a; Vector2 cB = _positions[indexB].c; float aB = _positions[indexB].a; // Solve normal constraints for (int j = 0; j < pointCount; ++j) { Transform xfA = new Transform(); Transform xfB = new Transform(); xfA.q = Matrex.CreateRotation(aA); // Actually about twice as fast to use our own function xfB.q = Matrex.CreateRotation(aB); // Actually about twice as fast to use our own function xfA.p = cA - Vector2.Transform(localCenterA, xfA.q); // Common.Math.Mul(xfA.q, localCenterA); xfB.p = cB - Vector2.Transform(localCenterB, xfB.q); // Common.Math.Mul(xfB.q, localCenterB); PositionSolverManifold psm = new PositionSolverManifold(); psm.Initialize(pc, xfA, xfB, j); Vector2 normal = psm.normal; Vector2 point = psm.point; float separation = psm.separation; Vector2 rA = point - cA; Vector2 rB = point - cB; // Track max constraint error. minSeparation = MathF.Min(minSeparation, separation); // Prevent large corrections and allow slop. float C = Math.Clamp(Settings.TOIBaumgarte * (separation + Settings.LinearSlop), -Settings.MaxLinearCorrection, 0.0f); // Compute the effective mass. float rnA = Vectex.Cross(rA, normal); float rnB = Vectex.Cross(rB, normal); float K = mA + mB + iA * rnA * rnA + iB * rnB * rnB; // Compute normal impulse float impulse = K > 0.0f ? -C / K : 0.0f; Vector2 P = impulse * normal; cA -= mA * P; aA -= iA * Vectex.Cross(rA, P); cB += mB * P; aB += iB * Vectex.Cross(rB, P); } _positions[indexA].c = cA; _positions[indexA].a = aA; _positions[indexB].c = cB; _positions[indexB].a = aB; } // We can't expect minSpeparation >= -b2_linearSlop because we don't // push the separation above -b2_linearSlop. return(minSeparation >= -1.5f * Settings.LinearSlop); }
public void SolveVelocityConstraints() { for (int i = 0; i < _count; ++i) { ContactVelocityConstraint vc = _velocityConstraints[i]; int indexA = vc.indexA; int indexB = vc.indexB; float mA = vc.invMassA; float iA = vc.invIA; float mB = vc.invMassB; float iB = vc.invIB; int pointCount = vc.pointCount; Vector2 vA = _velocities[indexA].v; float wA = _velocities[indexA].w; Vector2 vB = _velocities[indexB].v; float wB = _velocities[indexB].w; Vector2 normal = vc.normal; Vector2 tangent = Vectex.Cross(normal, 1.0f); float friction = vc.friction; //Debug.Assert(pointCount == 1 || pointCount == 2); // Solve tangent constraints first because non-penetration is more important // than friction. for (int j = 0; j < pointCount; ++j) { VelocityConstraintPoint vcp = vc.points[j]; // Relative velocity at contact Vector2 dv = vB + Vectex.Cross(wB, vcp.rB) - vA - Vectex.Cross(wA, vcp.rA); // Compute tangent force float vt = Vector2.Dot(dv, tangent) - vc.tangentSpeed; float lambda = vcp.tangentMass * (-vt); // b2Clamp the accumulated force float maxFriction = friction * vcp.normalImpulse; float newImpulse = Math.Clamp(vcp.tangentImpulse + lambda, -maxFriction, maxFriction); lambda = newImpulse - vcp.tangentImpulse; vcp.tangentImpulse = newImpulse; // Apply contact impulse Vector2 P = lambda * tangent; vA -= mA * P; wA -= iA * Vectex.Cross(vcp.rA, P); vB += mB * P; wB += iB * Vectex.Cross(vcp.rB, P); } // Solve normal constraints if (pointCount == 1 || Settings.BlockSolve == false) { for (int j = 0; j < pointCount; ++j) { VelocityConstraintPoint vcp = vc.points[j]; // Relative velocity at contact Vector2 dv = vB + Vectex.Cross(wB, vcp.rB) - vA - Vectex.Cross(wA, vcp.rA); // Compute normal impulse float vn = Vector2.Dot(dv, normal); float lambda = -vcp.normalMass * (vn - vcp.velocityBias); // b2Clamp the accumulated impulse float newImpulse = MathF.Max(vcp.normalImpulse + lambda, 0.0f); lambda = newImpulse - vcp.normalImpulse; vcp.normalImpulse = newImpulse; // Apply contact impulse Vector2 P = lambda * normal; vA -= mA * P; wA -= iA * Vectex.Cross(vcp.rA, P); vB += mB * P; wB += iB * Vectex.Cross(vcp.rB, P); } } else { // Block solver developed in collaboration with Dirk Gregorius (back in 01/07 on Box2D_Lite). // Build the mini LCP for this contact patch // // vn = A * x + b, vn >= 0, x >= 0 and vn_i * x_i = 0 with i = 1..2 // // A = J * W * JT and J = ( -n, -r1 x n, n, r2 x n ) // b = vn0 - velocityBias // // The system is solved using the "Total enumeration method" (s. Murty). The complementary constraint vn_i * x_i // implies that we must have in any solution either vn_i = 0 or x_i = 0. So for the 2D contact problem the cases // vn1 = 0 and vn2 = 0, x1 = 0 and x2 = 0, x1 = 0 and vn2 = 0, x2 = 0 and vn1 = 0 need to be tested. The first valid // solution that satisfies the problem is chosen. // // In order to account of the accumulated impulse 'a' (because of the iterative nature of the solver which only requires // that the accumulated impulse is clamped and not the incremental impulse) we change the impulse variable (x_i). // // Substitute: // // x = a + d // // a := old total impulse // x := new total impulse // d := incremental impulse // // For the current iteration we extend the formula for the incremental impulse // to compute the new total impulse: // // vn = A * d + b // = A * (x - a) + b // = A * x + b - A * a // = A * x + b' // b' = b - A * a; VelocityConstraintPoint cp1 = vc.points[0]; VelocityConstraintPoint cp2 = vc.points[1]; Vector2 a = new Vector2(cp1.normalImpulse, cp2.normalImpulse); //Debug.Assert(a.X >= 0.0f && a.Y >= 0.0f); // Relative velocity at contact Vector2 dv1 = vB + Vectex.Cross(wB, cp1.rB) - vA - Vectex.Cross(wA, cp1.rA); Vector2 dv2 = vB + Vectex.Cross(wB, cp2.rB) - vA - Vectex.Cross(wA, cp2.rA); // Compute normal velocity float vn1 = Vector2.Dot(dv1, normal); float vn2 = Vector2.Dot(dv2, normal); Vector2 b = new Vector2((float)(vn1 - cp1.velocityBias), (float)(vn2 - cp2.velocityBias)); // Compute b' b -= Vector2.Transform(a, vc.K); // Common.Math.Mul(vc.K, a); //const float k_errorTol = 1e-3f; //B2_NOT_USED(k_errorTol); for (; ;) { // // Case 1: vn = 0 // // 0 = A * x + b' // // Solve for x: // // x = - inv(A) * b' // Vector2 x = -Vector2.Transform(b, vc.normalMass); //Common.Math.Mul(vc.normalMass, b); if (x.X >= 0.0f && x.Y >= 0.0f) { // Get the incremental impulse Vector2 d = x - a; // Apply incremental impulse Vector2 P1 = d.X * normal; Vector2 P2 = d.Y * normal; vA -= mA * (P1 + P2); wA -= iA * (Vectex.Cross(cp1.rA, P1) + Vectex.Cross(cp2.rA, P2)); vB += mB * (P1 + P2); wB += iB * (Vectex.Cross(cp1.rB, P1) + Vectex.Cross(cp2.rB, P2)); // Accumulate cp1.normalImpulse = x.X; cp2.normalImpulse = x.Y; break; } // // Case 2: vn1 = 0 and x2 = 0 // // 0 = a11 * x1 + a12 * 0 + b1' // vn2 = a21 * x1 + a22 * 0 + b2' // x.X = -cp1.normalMass * b.X; x.Y = 0.0f; vn1 = 0.0f; vn2 = vc.K.M22 * x.X + b.Y; if (x.X >= 0.0f && vn2 >= 0.0f) { // Get the incremental impulse Vector2 d = x - a; // Apply incremental impulse Vector2 P1 = d.X * normal; Vector2 P2 = d.Y * normal; vA -= mA * (P1 + P2); wA -= iA * (Vectex.Cross(cp1.rA, P1) + Vectex.Cross(cp2.rA, P2)); vB += mB * (P1 + P2); wB += iB * (Vectex.Cross(cp1.rB, P1) + Vectex.Cross(cp2.rB, P2)); // Accumulate cp1.normalImpulse = x.X; cp2.normalImpulse = x.Y; break; } // // Case 3: vn2 = 0 and x1 = 0 // // vn1 = a11 * 0 + a12 * x2 + b1' // 0 = a21 * 0 + a22 * x2 + b2' // x.X = 0.0f; x.Y = -cp2.normalMass * b.Y; vn1 = vc.K.M12 * x.Y + b.X; vn2 = 0.0f; if (x.Y >= 0.0f && vn1 >= 0.0f) { // Resubstitute for the incremental impulse Vector2 d = x - a; // Apply incremental impulse Vector2 P1 = d.X * normal; Vector2 P2 = d.Y * normal; vA -= mA * (P1 + P2); wA -= iA * (Vectex.Cross(cp1.rA, P1) + Vectex.Cross(cp2.rA, P2)); vB += mB * (P1 + P2); wB += iB * (Vectex.Cross(cp1.rB, P1) + Vectex.Cross(cp2.rB, P2)); // Accumulate cp1.normalImpulse = x.X; cp2.normalImpulse = x.Y; break; } // // Case 4: x1 = 0 and x2 = 0 // // vn1 = b1 // vn2 = b2; x.X = 0.0f; x.Y = 0.0f; vn1 = b.X; vn2 = b.Y; if (vn1 >= 0.0f && vn2 >= 0.0f) { // Resubstitute for the incremental impulse Vector2 d = x - a; // Apply incremental impulse Vector2 P1 = d.X * normal; Vector2 P2 = d.Y * normal; vA -= mA * (P1 + P2); wA -= iA * (Vectex.Cross(cp1.rA, P1) + Vectex.Cross(cp2.rA, P2)); vB += mB * (P1 + P2); wB += iB * (Vectex.Cross(cp1.rB, P1) + Vectex.Cross(cp2.rB, P2)); // Accumulate cp1.normalImpulse = x.X; cp2.normalImpulse = x.Y; break; } // No solution, give up. This is hit sometimes, but it doesn't seem to matter. break; } } _velocities[indexA].v = vA; _velocities[indexA].w = wA; _velocities[indexB].v = vB; _velocities[indexB].w = wB; } }
public void InitializeVelocityConstraints() { for (int i = 0; i < _count; ++i) { ContactVelocityConstraint vc = _velocityConstraints[i]; ContactPositionConstraint pc = _positionConstraints[i]; float radiusA = pc.radiusA; float radiusB = pc.radiusB; Manifold manifold = _contacts[vc.contactIndex].Manifold; int indexA = vc.indexA; int indexB = vc.indexB; float mA = vc.invMassA; float mB = vc.invMassB; float iA = vc.invIA; float iB = vc.invIB; Vector2 localCenterA = pc.localCenterA; Vector2 localCenterB = pc.localCenterB; Vector2 cA = _positions[indexA].c; float aA = _positions[indexA].a; Vector2 vA = _velocities[indexA].v; float wA = _velocities[indexA].w; Vector2 cB = _positions[indexB].c; float aB = _positions[indexB].a; Vector2 vB = _velocities[indexB].v; float wB = _velocities[indexB].w; //Debug.Assert(manifold.pointCount > 0); Transform xfA = new Transform(); Transform xfB = new Transform(); xfA.q = Matrex.CreateRotation(aA); // Actually about twice as fast to use our own function xfB.q = Matrex.CreateRotation(aB); // Actually about twice as fast to use our own function xfA.p = cA - Vector2.Transform(localCenterA, xfA.q); // Common.Math.Mul(xfA.q, localCenterA); xfB.p = cB - Vector2.Transform(localCenterB, xfB.q); // Common.Math.Mul(xfB.q, localCenterB); WorldManifold worldManifold = new WorldManifold(); worldManifold.Initialize(manifold, xfA, radiusA, xfB, radiusB); vc.normal = worldManifold.normal; int pointCount = vc.pointCount; for (int j = 0; j < pointCount; ++j) { VelocityConstraintPoint vcp = vc.points[j]; vcp.rA = worldManifold.points[j] - cA; vcp.rB = worldManifold.points[j] - cB; float rnA = Vectex.Cross(vcp.rA, vc.normal); float rnB = Vectex.Cross(vcp.rB, vc.normal); float kNormal = mA + mB + iA * rnA * rnA + iB * rnB * rnB; vcp.normalMass = kNormal > 0f ? 1f / kNormal : 0f; Vector2 tangent = Vectex.Cross(vc.normal, 1f); float rtA = Vectex.Cross(vcp.rA, tangent); float rtB = Vectex.Cross(vcp.rB, tangent); float kTangent = mA + mB + iA * rtA * rtA + iB * rtB * rtB; vcp.tangentMass = kTangent > 0f ? 1f / kTangent : 0f; vcp.velocityBias = 0f; float vRel = Vector2.Dot(vc.normal, vB + Vectex.Cross(wB, vcp.rB) - vA - Vectex.Cross(wA, vcp.rA)); if (vRel < -Settings.VelocityThreshold) { vcp.velocityBias = -vc.restitution * vRel; } } // If we have two points, then prepare the block solver. if (vc.pointCount == 2 && Settings.BlockSolve) { VelocityConstraintPoint vcp1 = vc.points[0]; VelocityConstraintPoint vcp2 = vc.points[1]; float rn1A = Vectex.Cross(vcp1.rA, vc.normal); float rn1B = Vectex.Cross(vcp1.rB, vc.normal); float rn2A = Vectex.Cross(vcp2.rA, vc.normal); float rn2B = Vectex.Cross(vcp2.rB, vc.normal); float k11 = mA + mB + iA * rn1A * rn1A + iB * rn1B * rn1B; float k22 = mA + mB + iA * rn2A * rn2A + iB * rn2B * rn2B; float k12 = mA + mB + iA * rn1A * rn2A + iB * rn1B * rn2B; // Ensure a reasonable condition number. const float k_maxConditionNumber = 1000.0f; if (k11 * k11 < k_maxConditionNumber * (k11 * k22 - k12 * k12)) { // K is safe to invert. vc.K = new Matrix3x2(k11, k12, k12, k22, 0, 0); // vc.K.ex = new Vector2(k11, k12); // vc.K.ey = new Vector2(k12, k22); /*Matrix3x2*/ Matrex.Invert(vc.K, out Matrix3x2 KT); vc.normalMass = KT; } else { // The constraints are redundant, just use one. // TODO_ERIN use deepest? vc.pointCount = 1; } } } }