コード例 #1
0
 internal MostSimilarEstimator(User toUser,
                               UserCorrelation correlation,
                               Rescorer <Pair <User, User> > rescorer)
 {
     this.toUser      = toUser;
     this.correlation = correlation;
     this.rescorer    = rescorer;
 }
コード例 #2
0
 public SpearmanCorrelation(DataModel dataModel)
 {
     if (dataModel == null)
     {
         throw new ArgumentNullException("dataModel is null");
     }
     this.rankingUserCorrelation = new PearsonCorrelation(dataModel);
     this.refreshLock            = new ReentrantLock();
 }
コード例 #3
0
 public SpearmanCorrelation(UserCorrelation rankingUserCorrelation)
 {
     if (rankingUserCorrelation == null)
     {
         throw new ArgumentNullException("rankingUserCorrelation is null");
     }
     this.rankingUserCorrelation = rankingUserCorrelation;
     this.refreshLock            = new ReentrantLock();
 }
コード例 #4
0
		public SpearmanCorrelation(DataModel dataModel) 
		{
			if (dataModel == null) 
			{
				throw new ArgumentNullException("dataModel is null");
			}
			this.rankingUserCorrelation = new PearsonCorrelation(dataModel);
			this.refreshLock = new ReentrantLock();
		}
コード例 #5
0
		public SpearmanCorrelation(UserCorrelation rankingUserCorrelation) 
		{
			if (rankingUserCorrelation == null) 
			{
				throw new ArgumentNullException("rankingUserCorrelation is null");
			}
			this.rankingUserCorrelation = rankingUserCorrelation;
			this.refreshLock = new ReentrantLock();		
		}
コード例 #6
0
		/**
		 * <p>Constructs a {@link FarthestNeighborClusterSimilarity} based on the given {@link UserCorrelation}.
		 * By setting <code>samplingPercentage</code> to a value less than 1.0, this implementation will only examine
		 * that fraction of all user-user correlations between two clusters, increasing performance at the expense
		 * of accuracy.</p>
		 *
		 * @param Correlation
		 * @param samplingPercentage
		 * @since 1.4.5
		 */
		public FarthestNeighborClusterSimilarity(UserCorrelation correlation, double samplingPercentage) 
		{
			if (correlation == null) {
				throw new ArgumentNullException("Correlation is null");
			}
			if (double.IsNaN(samplingPercentage) || samplingPercentage <= 0.0 || samplingPercentage > 1.0) 
			{
				throw new ArgumentException("samplingPercentage is invalid: " + samplingPercentage);
			}
			this.correlation = correlation;
			this.samplingPercentage = samplingPercentage;
		}
コード例 #7
0
 /// <summary>
 /// construct a NearestNUserNeighborhood
 /// </summary>
 /// <param name="n">n Neighborhood size</param>
 /// <param name="userCorrelation">nearness metric</param>
 /// <param name="dataModel">data Model</param>
 /// <param name="samplingRate">percentage of users to consider when building Neighborhood -- decrease to
 /// trade quality for performance</param>
 public NearestNUserNeighborhood(int n,
                                 UserCorrelation userCorrelation,
                                 DataModel dataModel,
                                 double samplingRate)
     : base(userCorrelation, dataModel, samplingRate)
 {
     if (n < 1)
     {
         throw new ArgumentException("n must be at least 1");
     }
     this.cache = new SoftCache <Object, ICollection <User> >(new Retriever(this, n), dataModel.GetNumUsers());
 }
コード例 #8
0
 /**
  * @param threshold similarity threshold
  * @param userCorrelation similarity metric
  * @param dataModel data Model
  * @param samplingRate percentage of users to consider when building Neighborhood -- decrease to
  *  trade quality for performance
  * @throws IllegalArgumentException if threshold or samplingRate is {@link Double#NaN},
  *  or if samplingRate is not positive and less than or equal to 1.0, or if userCorrelation
  *  or dataModel are <code>null</code>
  * @since 1.3
  */
 public ThresholdUserNeighborhood(double threshold,
                                  UserCorrelation userCorrelation,
                                  DataModel dataModel,
                                  double samplingRate)
     : base(userCorrelation, dataModel, samplingRate)
 {
     if (Double.IsNaN(threshold))
     {
         throw new ArgumentException("threshold must not be NaN");
     }
     this.cache = new SoftCache <Object, ICollection <User> >(new Retriever(this, threshold), dataModel.GetNumUsers());
 }
コード例 #9
0
 public GenericUserBasedRecommender(DataModel dataModel,
                                    UserNeighborhood neighborhood,
                                    UserCorrelation correlation)
     : base(dataModel)
 {
     if (neighborhood == null)
     {
         throw new ArgumentNullException("Neighborhood is null");
     }
     this.neighborhood = neighborhood;
     this.correlation  = correlation;
     this.refreshLock  = new ReentrantLock();
 }
コード例 #10
0
 /// <summary>
 /// <p>Constructs a <see cref="taste.Recommender.NearestNeighborClusterSimilarity">NearestNeighborClusterSimilarity</see> based on the given
 /// <see cref="taste.Correlation.UserCorrelation">UserCorrelation</see>.
 /// By setting <code>samplingPercentage</code> to a value less than 1.0, this implementation will only examine
 /// that fraction of all user-user correlations between two clusters, increasing performance at the expense
 /// of accuracy.</p>
 /// </summary>
 /// <param name="Correlation"></param>
 /// <param name="samplingPercentage"></param>
 public NearestNeighborClusterSimilarity(UserCorrelation correlation, double samplingPercentage)
 {
     if (correlation == null)
     {
         throw new ArgumentNullException("Correlation is null");
     }
     if (double.IsNaN(samplingPercentage) || samplingPercentage <= 0.0 || samplingPercentage > 1.0)
     {
         throw new ArgumentException("samplingPercentage is invalid: " + samplingPercentage);
     }
     this.correlation        = correlation;
     this.samplingPercentage = samplingPercentage;
 }
コード例 #11
0
 public AbstractUserNeighborhood(UserCorrelation userCorrelation,
                      DataModel dataModel,
                      double samplingRate)
 {
     if (userCorrelation == null || dataModel == null)
     {
         throw new ArgumentNullException("userCorrelation or dataModel is null");
     }
     if (Double.IsNaN(samplingRate) || samplingRate <= 0.0 || samplingRate > 1.0)
     {
         throw new ArgumentException("samplingRate must be in (0,1]");
     }
     this.userCorrelation = userCorrelation;
     this.dataModel = dataModel;
     this.samplingRate = samplingRate;
 }
コード例 #12
0
 public AbstractUserNeighborhood(UserCorrelation userCorrelation,
                                 DataModel dataModel,
                                 double samplingRate)
 {
     if (userCorrelation == null || dataModel == null)
     {
         throw new ArgumentNullException("userCorrelation or dataModel is null");
     }
     if (Double.IsNaN(samplingRate) || samplingRate <= 0.0 || samplingRate > 1.0)
     {
         throw new ArgumentException("samplingRate must be in (0,1]");
     }
     this.userCorrelation = userCorrelation;
     this.dataModel       = dataModel;
     this.samplingRate    = samplingRate;
 }
コード例 #13
0
            public ICollection <User> GetValue(Object key)
            {
                if (log.IsInfoEnabled)
                {
                    log.Info("Computing Neighborhood around user ID '" + key + '\'');
                }

                DataModel          dataModel           = _owner.DataModel;
                User               theUser             = dataModel.GetUser(key);
                IList <User>       neighborhood        = new List <User>();
                IEnumerable <User> users               = dataModel.GetUsers();
                UserCorrelation    userCorrelationImpl = _owner.UserCorrelation;

                IEnumerator <User> en = users.GetEnumerator();

                while (en.MoveNext())
                {
                    User user = en.Current;
                    if (_owner.SampleForUser && !key.Equals(user.ID))
                    {
                        double theCorrelation = userCorrelationImpl.GetUserCorrelation(theUser, user);
                        if (!Double.IsNaN(theCorrelation) && theCorrelation >= threshold)
                        {
                            neighborhood.Add(user);
                        }
                    }
                }

                if (log.IsInfoEnabled)
                {
                    log.Info("UserNeighborhood around user ID '" + key + "' is: " + neighborhood);
                }

                //return Collections.unmodifiableList(Neighborhood);
                return(neighborhood);
            }
コード例 #14
0
 /**
  * @param threshold similarity threshold
  * @param userCorrelation similarity metric
  * @param dataModel data Model
  * @throws IllegalArgumentException if threshold is {@link Double#NaN},
  *  or if samplingRate is not positive and less than or equal to 1.0, or if userCorrelation
  *  or dataModel are <code>null</code>
  */
 public ThresholdUserNeighborhood(double threshold,
                                  UserCorrelation userCorrelation,
                                  DataModel dataModel)
     : this(threshold, userCorrelation, dataModel, 1.0)
 {
 }
コード例 #15
0
            public ICollection <User> GetValue(Object key)
            {
                if (log.IsInfoEnabled)
                {
                    log.Info("Computing Neighborhood around user ID '" + key + '\'');
                }

                DataModel       dataModel           = owner.DataModel;
                User            theUser             = dataModel.GetUser(key);
                UserCorrelation userCorrelationImpl = owner.UserCorrelation;

                LinkedList <UserCorrelationPair> queue = new LinkedList <UserCorrelationPair>();
                bool full = false;

                foreach (User user in dataModel.GetUsers())
                {
                    if (owner.SampleForUser && !key.Equals(user.ID))
                    {
                        double theCorrelation = userCorrelationImpl.GetUserCorrelation(theUser, user);
                        if (!Double.IsNaN(theCorrelation) && (!full || theCorrelation > queue.Last.Value.Correlation))
                        {
                            LinkedListNode <UserCorrelationPair> iterator = queue.Last;
                            while (iterator != null && iterator.Previous != null)
                            {
                                iterator = iterator.Previous;

                                if (theCorrelation <= iterator.Value.Correlation)
                                {
                                    iterator = iterator.Next;
                                    break;
                                }
                                if (iterator == queue.First)
                                {
                                    break;
                                }
                            }

                            UserCorrelationPair pair = new UserCorrelationPair(user, theCorrelation);
                            if (iterator == null)
                            {
                                queue.AddFirst(pair);
                            }
                            else
                            {
                                queue.AddAfter(iterator, pair);
                            }
                            if (full)
                            {
                                queue.RemoveLast();
                            }
                            else if (queue.Count > n)
                            {
                                full = true;
                                queue.RemoveLast();
                            }
                        }
                    }
                }

                IList <User> neighborhood = new List <User>(queue.Count);

                foreach (UserCorrelationPair pair in queue)
                {
                    //assert pair != null;
                    neighborhood.Add(pair.User);
                }

                if (log.IsInfoEnabled)
                {
                    log.Info("UserNeighborhood around user ID '" + key + "' is: " + neighborhood);
                }

                //return Collections.unmodifiableList(Neighborhood);
                return(neighborhood);
            }
コード例 #16
0
		/**
		 * <p>Constructs a {@link FarthestNeighborClusterSimilarity} based on the given {@link UserCorrelation}.
		 * All user-user correlations are examined.</p>
		 *
		 * @param Correlation
		 */
		public FarthestNeighborClusterSimilarity(UserCorrelation correlation) 
            :this(correlation, 1.0)
        {			
		}
コード例 #17
0
 /// <summary>
 /// construct a NearestNUserNeighborhood
 /// </summary>
 /// <param name="n">Neighborhood size</param>
 /// <param name="userCorrelation">nearness metric</param>
 /// <param name="dataModel">data Model</param>
 public NearestNUserNeighborhood(int n,
                                 UserCorrelation userCorrelation,
                                 DataModel dataModel)
     : this(n, userCorrelation, dataModel, 1.0)
 {
 }
コード例 #18
0
 /**
  * <p>Constructs a {@link NearestNeighborClusterSimilarity} based on the given {@link UserCorrelation}.
  * All user-user correlations are examined.</p>
  *
  * @param Correlation
  */
 public NearestNeighborClusterSimilarity(UserCorrelation correlation)
     : this(correlation, 1.0)
 {
 }