public void PolakRibiereUnivariateExponentialRegressionWithResidualSumOfSquares() { var theta = Vector <double> .Build.DenseOfArray(new[] { 0D, 14000D, -1.7D }); var initialTheta = Vector <double> .Build.DenseOfArray(new[] { 0D, 10000D, -1D }); // define the hypothesis var hypothesis = new UnivariateExponentialHypothesis(); // define a probability distribution var distribution = new ContinuousUniform(0D, 1000D); // obtain the test data const int dataPoints = 100; var trainingSet = new List <DataPoint <double> >(dataPoints); for (int i = 0; i < dataPoints; ++i) { var inputs = Vector <double> .Build.Random(1, distribution); var output = hypothesis.Evaluate(theta, inputs); trainingSet.Add(new DataPoint <double>(inputs, output)); } ; // cost function is sum of squared errors var costFunction = new ResidualSumOfSquaresCostFunction(hypothesis, trainingSet); // define the optimization problem var problem = new OptimizationProblem <double, IDifferentiableCostFunction <double> >(costFunction, initialTheta); // define the line search algorithm var lineSearch = new SecantMethod { MaxLineSearchIterations = 40, LineSearchStepSize = 1E-5D, ErrorTolerance = 1E-5D }; // optimize! var gd = new PolakRibiereCG(lineSearch) { MaxIterations = 10000, ErrorTolerance = 1E-5D }; var result = gd.Minimize(problem); // assert! var coefficients = result.Coefficients; coefficients[1].Should().BeApproximately(theta[1], 1000D, "because that's the underlying system's [a] parameter"); coefficients[2].Should().BeApproximately(theta[2], 1E-2D, "because that's the underlying system's [b] parameter"); coefficients[0].Should().BeApproximately(theta[0], 1E-5D, "because that's the underlying system's offset"); }
public void UnivariateExponentialRegressionWithResidualSumOfSquares() { var theta = Vector<double>.Build.DenseOfArray(new[] { 0D, 13500D, -1.7D }); var initialTheta = Vector<double>.Build.DenseOfArray(new[] { 0D, 10000D, -1D }); // define the hypothesis var hypothesis = new UnivariateExponentialHypothesis(); // define a probability distribution var distribution = new ContinuousUniform(0D, 1000D); // obtain the test data const int dataPoints = 100; var trainingSet = new List<DataPoint<double>>(dataPoints); for (int i = 0; i < dataPoints; ++i) { var inputs = Vector<double>.Build.Random(1, distribution); var output = hypothesis.Evaluate(theta, inputs); trainingSet.Add(new DataPoint<double>(inputs, output)); }; // cost function is sum of squared errors var costFunction = new ResidualSumOfSquaresCostFunction(hypothesis, trainingSet); // define the optimization problem var problem = new OptimizationProblem<double, IDifferentiableCostFunction<double>>(costFunction, initialTheta); // optimize! var gd = new ResilientErrorGD(); var result = gd.Minimize(problem); // assert! var coefficients = result.Coefficients; coefficients[1].Should().BeApproximately(theta[1], 1000D, "because that's the underlying system's [a] parameter"); coefficients[2].Should().BeApproximately(theta[2], 1E-2D, "because that's the underlying system's [b] parameter"); coefficients[0].Should().BeApproximately(theta[0], 1E-5D, "because that's the underlying system's offset"); }