private static void ValidateSatyamCARPKObjectCountingAggregationResult(List <SatyamAggregatedResultsTableEntry> aggResultEntries, out double totalError, out double totalGroundTruth) { List <double> aggResultCounts = new List <double>(); List <int> GroundTruthCounts = new List <int>(); List <double> abs_errors = new List <double>(); List <double> errors = new List <double>(); foreach (SatyamAggregatedResultsTableEntry aggResultEntry in aggResultEntries) { SatyamSaveAggregatedDataSatyam data = new SatyamSaveAggregatedDataSatyam(aggResultEntry); string fileName = URIUtilities.filenameFromURINoExtension(data.SatyamURI); string labelFilePath = DirectoryConstants.CARPKCountingLabels + fileName + ".txt"; string[] labels = File.ReadAllLines(labelFilePath); int GroundtruthCount = labels.Length; string jobGUID = aggResultEntry.JobGUID; int taskID = aggResultEntry.SatyamTaskTableEntryID; String resultString = data.AggregatedResultString; ObjectCountingAggregatedResult result = JSonUtils.ConvertJSonToObject <ObjectCountingAggregatedResult>(resultString); aggResultCounts.Add(result.Count); GroundTruthCounts.Add(GroundtruthCount); abs_errors.Add(Math.Abs(GroundtruthCount - result.Count)); errors.Add(GroundtruthCount - result.Count); } totalError = abs_errors.Sum(); totalGroundTruth = GroundTruthCounts.Sum(); double totalErrorRatio = totalError / totalGroundTruth; Console.WriteLine("Error: {0} / {1} = {2}", totalError, totalGroundTruth, totalErrorRatio); Console.WriteLine("Total Aggregated {0}", aggResultEntries.Count); }
public static bool AggregatedResultEqualsGroundTruth(string satyamUri, string resultString) { string fileName = URIUtilities.filenameFromURINoExtension(satyamUri); string VideoCategory = getVideoCategoryFromFileName(fileName); if (VideoCategory == "") { Console.WriteLine("this video doesn't have valid category in filename"); } SingleObjectLabelingAggregatedResult result = JSonUtils.ConvertJSonToObject <SingleObjectLabelingAggregatedResult>(resultString); return(result.Category.Equals(VideoCategory, StringComparison.InvariantCultureIgnoreCase)); }
private static void ValidateSatyamKITTIObjectCountingAggregationResult(List <SatyamAggregatedResultsTableEntry> aggResultEntries, //bool saveImage = false, out double totalError, out double totalGroundTruth, int MinHeight = TaskConstants.OBJECT_COUNTING_VALIDATION_MIN_HEIGHT, int MaxOcclusion = TaskConstants.OBJECT_COUNTING_VALIDATION_MAX_OCCLUSION, double Max_Truncation = TaskConstants.OBJECT_COUNTING_VALIDATION_MIN_TRUNCATION) { List <double> aggResultCounts = new List <double>(); List <int> GroundTruthCounts = new List <int>(); List <double> errors = new List <double>(); foreach (SatyamAggregatedResultsTableEntry aggResultEntry in aggResultEntries) { SatyamSaveAggregatedDataSatyam data = new SatyamSaveAggregatedDataSatyam(aggResultEntry); string fileName = URIUtilities.filenameFromURINoExtension(data.SatyamURI); KITTIDetectionGroundTruth GroundTruthObjects = new KITTIDetectionGroundTruth(KITTIDetectionResultValidation.GroundTruthLabelDirectory + fileName + ".txt", MinHeight, MaxOcclusion, Max_Truncation); string jobGUID = aggResultEntry.JobGUID; int taskID = aggResultEntry.SatyamTaskTableEntryID; String resultString = data.AggregatedResultString; ObjectCountingAggregatedResult result = JSonUtils.ConvertJSonToObject <ObjectCountingAggregatedResult>(resultString); int GroundtruthCount = 0; for (int i = 0; i < GroundTruthObjects.objects.Count; i++) { MultiObjectLocalizationAndLabelingResultSingleEntry obj = GroundTruthObjects.objects[i]; //if (obj.Category == "Car" || obj.Category == "Van" || obj.Category == "DontCare") if (obj.Category == "Car" || obj.Category == "Van") { //if (!GroundTruthObjects.BlackListed[i]) //{ GroundtruthCount++; //} } } aggResultCounts.Add(result.Count); GroundTruthCounts.Add(GroundtruthCount); errors.Add(Math.Abs(GroundtruthCount - result.Count)); } totalError = errors.Sum(); totalGroundTruth = GroundTruthCounts.Sum(); double totalErrorRatio = totalError / totalGroundTruth; Console.WriteLine("Error: {0} / {1} = {2}", totalError, totalGroundTruth, totalErrorRatio); Console.WriteLine("Total Aggregated {0}", aggResultEntries.Count); }
public static ImageSegmentationAggregatedResult_NoHoles getAggregatedResult(List <ImageSegmentationResult_NoHoles> results, string SatyamURL, string guid, int MinResults = TaskConstants.IMAGE_SEGMENTATION_MTURK_MIN_RESULTS_TO_AGGREGATE, int MaxResults = TaskConstants.IMAGE_SEGMENTATION_MTURK_MAX_RESULTS_TO_AGGREGATE, double CategoryMajorityThreshold = TaskConstants.IMAGE_SEGMENTATION_MTURK_MAJORITY_CATEGORY_THRESHOLD, double PolygonBoundaryMajorityThreshold = TaskConstants.IMAGE_SEGMENTATION_MTURK_MAJORITY_POLYGON_BOUNDARY_THRESHOLD, double ObjectsCoverageThreshold = TaskConstants.IMAGE_SEGMENTATION_MTURK_OBJECT_COVERAGE_THRESHOLD_FOR_AGGREGATION_TERMINATION ) { if (results.Count < MinResults) //need at least three results! { return(null); } int ImageWidth = results[0].imageWidth; int ImageHeight = results[0].imageHeight; byte[] PNG = new byte[ImageHeight * ImageWidth]; ImageSegmentationAggregatedResult_NoHoles aggResult = new ImageSegmentationAggregatedResult_NoHoles(); aggResult.metaData = new ImageSegmentationAggregatedResultMetaData_NoHoles(); aggResult.metaData.TotalCount = results.Count; for (int i = 0; i < PNG.Length; i++) { PNG[i] = 0; } aggResult.boxesAndCategories = new ImageSegmentationResult_NoHoles(); aggResult.boxesAndCategories.objects = new List <ImageSegmentationResultSingleEntry_NoHoles>(); aggResult.boxesAndCategories.displayScaleReductionX = results[0].displayScaleReductionX; aggResult.boxesAndCategories.displayScaleReductionY = results[0].displayScaleReductionY; aggResult.boxesAndCategories.imageHeight = ImageHeight; aggResult.boxesAndCategories.imageWidth = ImageWidth; //first use multipartitie wieghted matching to associated the boxes disregarding the labels since //people might make mistake with lables but boxes are usually right List <List <GenericPolygon> > AllPolygons = new List <List <GenericPolygon> >(); List <int> noPolygonsPerResult = new List <int>(); foreach (ImageSegmentationResult_NoHoles res in results) { AllPolygons.Add(new List <GenericPolygon>()); if (res == null) { noPolygonsPerResult.Add(0); continue; } List <GenericPolygon> polygonList = AllPolygons[AllPolygons.Count - 1]; foreach (ImageSegmentationResultSingleEntry_NoHoles entry in res.objects) { polygonList.Add(entry.polygon); } noPolygonsPerResult.Add(polygonList.Count); } //now associate boxes across the various results List <MultipartiteWeightedMatch> polyAssociation = PolygonAssociation.computeGenericPolygonAssociations(AllPolygons); int noObjects = polyAssociation.Count; int noAssociatedPolygons = 0; //how many of the drawn boxes for each result were actually associated by two or more people for each user? SortedDictionary <int, int> noMultipleAssociatedPolygonsPerResult = new SortedDictionary <int, int>(); for (int i = 0; i < results.Count; i++) { noMultipleAssociatedPolygonsPerResult.Add(i, 0); } foreach (MultipartiteWeightedMatch match in polyAssociation) { if (match.elementList.Count > 1) //this has been corroborated by two people { noAssociatedPolygons++; foreach (KeyValuePair <int, int> entry in match.elementList) { noMultipleAssociatedPolygonsPerResult[entry.Key]++; } } } //count how many people have a high association ratio int noHighAssociationRatio = 0; for (int i = 0; i < results.Count; i++) { if (noPolygonsPerResult[i] == 0) { continue; } double ratio = (double)noMultipleAssociatedPolygonsPerResult[i] / (double)noPolygonsPerResult[i]; if (ratio > ObjectsCoverageThreshold) { noHighAssociationRatio++; } } if (noHighAssociationRatio < MinResults) //at least three people should have all their boxes highly corroborated by one other person { return(null); } //int noAcceptedPolygons = 0; for (int idx = 0; idx < polyAssociation.Count; idx++) { MultipartiteWeightedMatch match = polyAssociation[idx]; List <GenericPolygon> polyList = new List <GenericPolygon>(); List <string> identifiers = new List <string>(); foreach (KeyValuePair <int, int> entry in match.elementList) { polyList.Add(AllPolygons[entry.Key][entry.Value]); identifiers.Add(entry.Key + "_" + entry.Value); } //GenericPolygon aggregatedPolygon = GetAggregatedGenericPolygon_Relaxation(polyList, ImageWidth, ImageHeight, PolygonBoundaryMajorityThreshold); //GenericPolygon aggregatedPolygon = GetAggregatedGenericPolygon_MajorityEdge(polyList, ImageWidth, ImageHeight, PolygonBoundaryMajorityThreshold); GenericPolygon aggregatedPolygon = new GenericPolygon();// dummy polygon byte[] png = GetAggregatedGenericPolygon_PixelSweep(polyList, ImageWidth, ImageHeight, PolygonBoundaryMajorityThreshold); Dictionary <string, int> categoryNames = new Dictionary <string, int>(); int totalCount = match.elementList.Count; int maxCount = 0; string maxCategory = ""; foreach (KeyValuePair <int, int> entry in match.elementList) { string category = results[entry.Key].objects[entry.Value].Category; if (!categoryNames.ContainsKey(category)) { categoryNames.Add(category, 0); } categoryNames[category]++; if (maxCount < categoryNames[category]) { maxCount = categoryNames[category]; maxCategory = category; } } double probability = ((double)maxCount + 1) / ((double)totalCount + 2); if (probability < CategoryMajorityThreshold && results.Count < MaxResults) //this is not a valid category need more work { return(null); } // now we have one segment ready ImageSegmentationResultSingleEntry_NoHoles aggregated = new ImageSegmentationResultSingleEntry_NoHoles(); aggregated.polygon = aggregatedPolygon; aggregated.Category = maxCategory; aggResult.boxesAndCategories.objects.Add(aggregated); for (int i = 0; i < PNG.Length; i++) { if (PNG[i] == 0 && png[i] != 0) { PNG[i] = (byte)(idx + 1); } } } // save and upload to azure string filename = URIUtilities.filenameFromURINoExtension(SatyamURL); string filepath = DirectoryConstants.defaultTempDirectory + filename + "_aggregated.PNG"; ImageUtilities.savePNGRawData(filepath, ImageWidth, ImageHeight, PNG); SatyamJobStorageAccountAccess blob = new SatyamJobStorageAccountAccess(); string container = SatyamTaskGenerator.JobTemplateToSatyamContainerNameMap[TaskConstants.Segmentation_Image_MTurk]; string directoryPath = guid + "_aggregated"; blob.UploadALocalFile(filepath, container, directoryPath); aggResult.metaData.PNG_URL = TaskConstants.AzureBlobURL + container + "/" + directoryPath + "/" + filename + "_aggregated.PNG"; return(aggResult); }
/// <summary> /// Input should be a folder of videos and corresponding annotation file with the same name /// </summary> /// <param name="jobEntry"></param> public static bool ProcessAndUploadToAzureBlob(SatyamJobSubmissionsTableAccessEntry jobEntry) { // if the input is a folder of folders of frames, then copy directly SatyamJobStorageAccountAccess satyamStorage = new SatyamJobStorageAccountAccess(); string satyamContainerName = SatyamTaskGenerator.JobTemplateToSatyamContainerNameMap[jobEntry.JobTemplateType]; string GUID = jobEntry.JobGUID; string satyamDirectoryName = GUID; SatyamJob job = JSonUtils.ConvertJSonToObject <SatyamJob>(jobEntry.JobParametersString); MultiObjectTrackingSubmittedJob jobParams = JSonUtils.ConvertJSonToObject <MultiObjectTrackingSubmittedJob>(job.JobParameters); BlobContainerManager bcm = new BlobContainerManager(); string status = bcm.Connect(job.azureInformation.AzureBlobStorageConnectionString); List <string> FileTypes = SatyamTaskGenerator.ValidFileTypesByTemplate[job.JobTemplateType]; if (status != "SUCCESS") { return(false); } string guidFolder = DirectoryConstants.defaultTempDirectory + "\\" + GUID; Directory.CreateDirectory(guidFolder); int chunkLength = jobParams.ChunkDuration; // sec int outputFPS = jobParams.FrameRate; double chunkOverlap = jobParams.ChunkOverlap; // sec var client = new WebClient(); // sample to frames int noFramePerChunk = (int)(chunkLength * outputFPS); int noFrameOverlap = (int)(chunkOverlap * outputFPS); List <string> videoUrls = bcm.getURLList(job.azureInformation.AzureBlobStorageContainerName, job.azureInformation.AzureBlobStorageContainerDirectoryName); Dictionary <string, List <string> > videos = new Dictionary <string, List <string> >(); foreach (string videolink in videoUrls) { string videoName = URIUtilities.filenameFromURINoExtension(videolink); if (!videos.ContainsKey(videoName)) { videos.Add(videoName, new List <string>()); } videos[videoName].Add(videolink); } foreach (string videoName in videos.Keys) { // filter out those that doesn't provide a annotation file with it.... if (videos[videoName].Count != 2) { Console.WriteLine("Warning: Not 2 files provided for {0}.", videoName); //Directory.Delete(guidFolder, true); //return false; continue; } string videoURL = ""; string annotationURL = ""; foreach (string fileLink in videos[videoName]) { string extension = URIUtilities.fileExtensionFromURI(fileLink); if (extension != "txt") { videoURL = fileLink; } else { annotationURL = fileLink; } } string outputDirectory = guidFolder + "\\" + videoName; Directory.CreateDirectory(outputDirectory); string videoNameWithExtension = URIUtilities.filenameFromURI(videoURL); client.DownloadFile(videoURL, outputDirectory + "\\" + videoNameWithExtension); FFMpegWrappers.ExtractFrames(DirectoryConstants.ffmpeg, outputDirectory + "\\" + videoNameWithExtension, outputDirectory, videoName, DateTime.Now, outputFPS); File.Delete(outputDirectory + "\\" + videoNameWithExtension); List <string> chunkFolders = TrackingDataPreprocessor.GroupFramesIntoChunks(outputDirectory, noFramePerChunk); //parse VIRAT annotation file string annotationNameWithExtension = URIUtilities.filenameFromURI(annotationURL); client.DownloadFile(annotationURL, outputDirectory + "\\" + annotationNameWithExtension); parseAnnotationFileIntoChunkFolders(chunkFolders, outputDirectory + "\\" + annotationNameWithExtension, noFramePerChunk, outputFPS); //upload for (int i = 0; i < chunkFolders.Count; i++) { string subDir = chunkFolders[i]; satyamStorage.uploadALocalFolder(subDir, satyamContainerName, satyamDirectoryName + "/Video_" + videoName + "_startingFrame_" + noFramePerChunk * i); } Directory.Delete(outputDirectory, true); } return(true); }
public static void AggregateWithParameter(string guid, int MinResults = TaskConstants.TRACKLET_LABELING_MTURK_MIN_RESULTS_TO_AGGREGATE, int MaxResults = TaskConstants.TRACKLET_LABELING_MTURK_MAX_RESULTS_TO_AGGREGATE, double boxToleranceThreshold = TaskConstants.TRACKLET_LABELING_BOX_DEVIATION_THRESHOLD, double ObjectCoverageApprovalThresholdPerVideo = TaskConstants.TRACKLET_LABELING_APPROVALRATIO_PER_VIDEO, double BoxCoverageApprovalThresholdPerTrack = TaskConstants.TRACKLET_LABELING_APPROVALRATIO_PER_TRACK, int consensusNumber = TaskConstants.TRACKLET_LABELING_MIN_RESULTS_FOR_CONSENSUS, double minTubeletIoUSimilarityThreshold = TaskConstants.TRACKLET_LABELING_MIN_TUBELET_SIMILARITY_THRESHOLD, double attributeMajority = TaskConstants.TRACKLET_LABELING_MTURK_ATTRIBUTE_MAJORITY_THRESHOLD, bool allFalseAttributeInvalid = false ) { string configString = "Min_" + MinResults + "_Max_" + MaxResults + "_IoU_" + minTubeletIoUSimilarityThreshold + "_Ratio_" + ObjectCoverageApprovalThresholdPerVideo; Console.WriteLine("Aggregating for " + guid + " with param set " + configString); SatyamResultsTableAccess resultsDB = new SatyamResultsTableAccess(); List <SatyamResultsTableEntry> entries = resultsDB.getEntriesByGUID(guid); resultsDB.close(); SortedDictionary <DateTime, List <SatyamResultsTableEntry> > entriesBySubmitTime = SatyamResultValidationToolKit.SortResultsBySubmitTime_OneResultPerTurkerPerTask(entries); Dictionary <int, List <MultiObjectTrackingResult> > ResultsPerTask = new Dictionary <int, List <MultiObjectTrackingResult> >(); List <int> aggregatedTasks = new List <int>(); int noTotalConverged = 0; //int noCorrect = 0; int noTerminatedTasks = 0; List <SatyamAggregatedResultsTableEntry> aggEntries = new List <SatyamAggregatedResultsTableEntry>(); Dictionary <int, int> noResultsNeededForAggregation = SatyamResultsAnalysis.getNoResultsNeededForAggregationFromLog(configString, guid); Dictionary <int, int> noResultsNeededForAggregation_new = new Dictionary <int, int>(); // play back by time Dictionary <int, List <string> > WorkersPerTask = new Dictionary <int, List <string> >(); foreach (DateTime t in entriesBySubmitTime.Keys) { //Console.WriteLine("Processing Results of time: {0}", t); List <SatyamResultsTableEntry> ResultEntries = entriesBySubmitTime[t]; foreach (SatyamResultsTableEntry entry in ResultEntries) { SatyamResult satyamResult = JSonUtils.ConvertJSonToObject <SatyamResult>(entry.ResultString); SatyamTask task = JSonUtils.ConvertJSonToObject <SatyamTask>(satyamResult.TaskParametersString); MultiObjectTrackingSubmittedJob job = JSonUtils.ConvertJSonToObject <MultiObjectTrackingSubmittedJob>(task.jobEntry.JobParameters); string fileName = URIUtilities.filenameFromURINoExtension(task.SatyamURI); int taskEntryID = entry.SatyamTaskTableEntryID; if (aggregatedTasks.Contains(taskEntryID)) { continue; } if (!ResultsPerTask.ContainsKey(taskEntryID)) { ResultsPerTask.Add(taskEntryID, new List <MultiObjectTrackingResult>()); WorkersPerTask.Add(taskEntryID, new List <string>()); } // remove duplicate workers result string workerID = satyamResult.amazonInfo.WorkerID; if (WorkersPerTask[taskEntryID].Contains(workerID)) { continue; } //enclose only non-duplicate results, one per each worker. WorkersPerTask[taskEntryID].Add(workerID); string videoName = URIUtilities.localDirectoryNameFromURI(task.SatyamURI); string[] fields = videoName.Split('_'); int startingFrame = Convert.ToInt32(fields[fields.Length - 1]); int maxChunkEndFrame = startingFrame + job.ChunkDuration * job.FrameRate; int noFrameOverlap = (int)(job.ChunkOverlap * job.FrameRate); if (startingFrame != 0) { startingFrame -= noFrameOverlap; } string blobDir = URIUtilities.localDirectoryFullPathFromURI(task.SatyamURI); VATIC_DVA_CrowdsourcedResult taskr = TrackletLabelingAggregator.createVATIC_DVA_CrowdsourcedResultUsingSatyamBlobImageCount(satyamResult.TaskResult, blobDir, entry.SatyamTaskTableEntryID.ToString(), job.FrameRate); //MultiObjectTrackingResult result_tmp = vatic_tmp.getCompressedTracksInTimeSegment(); //VATIC_DVA_CrowdsourcedResult taskr = new VATIC_DVA_CrowdsourcedResult(satyamResult.TaskResult, videoName, entry.ID.ToString(), ImageURLs.Count, job.FrameRate); MultiObjectTrackingResult res = taskr.getCompressedTracksInTimeSegment(); if (allFalseAttributeInvalid) { if (TrackletLabelingAggregator.AllAttributeAllFalse(res)) { continue; } } ResultsPerTask[taskEntryID].Add(res); // check log if enough results are collected if (noResultsNeededForAggregation != null && noResultsNeededForAggregation.ContainsKey(taskEntryID) && ResultsPerTask[taskEntryID].Count < noResultsNeededForAggregation[taskEntryID]) { continue; } // hack for masters int tempMin = MinResults; if (TaskConstants.masterGUIDs.Contains(entry.JobGUID)) { tempMin = 1; } TrackletLabelingAggregatedResult aggResult = TrackletLabelingAggregator.getAggregatedResult(ResultsPerTask[taskEntryID], guid, task.SatyamURI, job.FrameRate, job.BoundaryLines, MinResults, MaxResults, boxToleranceThreshold, ObjectCoverageApprovalThresholdPerVideo, BoxCoverageApprovalThresholdPerTrack, consensusNumber, minTubeletIoUSimilarityThreshold, attributeMajority); if (aggResult == null) { continue; } //////////////// aggregation happen // record logs if (noResultsNeededForAggregation == null || !noResultsNeededForAggregation.ContainsKey(taskEntryID)) { noResultsNeededForAggregation_new.Add(taskEntryID, ResultsPerTask[taskEntryID].Count); } aggregatedTasks.Add(taskEntryID); noTotalConverged++; if (ResultsPerTask[taskEntryID].Count >= MaxResults) { noTerminatedTasks++; } SatyamAggregatedResult SatyamAggResult = new SatyamAggregatedResult(); SatyamAggResult.SatyamTaskTableEntryID = taskEntryID; SatyamAggResult.AggregatedResultString = JSonUtils.ConvertObjectToJSon <TrackletLabelingAggregatedResult>(aggResult); SatyamAggResult.TaskParameters = JSonUtils.ConvertJSonToObject <SatyamResult>(entry.ResultString).TaskParametersString; SatyamAggregatedResultsTableEntry aggEntry = new SatyamAggregatedResultsTableEntry(); aggEntry.SatyamTaskTableEntryID = taskEntryID; aggEntry.JobGUID = entry.JobGUID; aggEntry.ResultString = JSonUtils.ConvertObjectToJSon <SatyamAggregatedResult>(SatyamAggResult); aggEntries.Add(aggEntry); } } Console.WriteLine("Total_Aggregated_Tasks: {0}", noTotalConverged); Console.WriteLine("Total_Terminated_Tasks: {0}", noTerminatedTasks); SatyamResultsAnalysis.RecordAggregationLog(noResultsNeededForAggregation_new, configString, guid); TrackletLabelingAnalyzer.GroupEntriesByVideoNameAndStitchAndSaveAggregatedResultVideosLocally(aggEntries, DirectoryConstants.defaultTempDirectory + guid); }
public static void SaveAggregatedResultVideosLocally(List <SatyamAggregatedResultsTableEntry> entries, string directoryName) { directoryName = directoryName + "\\Aggregated"; if (!Directory.Exists(directoryName)) { Directory.CreateDirectory(directoryName); } SatyamJobStorageAccountAccess satyamStorage = new SatyamJobStorageAccountAccess(); for (int i = 0; i < entries.Count; i++) { SatyamAggregatedResultsTableEntry entry = entries[i]; SatyamAggregatedResult satyamAggResult = JSonUtils.ConvertJSonToObject <SatyamAggregatedResult>(entry.ResultString); SatyamTask aggTask = JSonUtils.ConvertJSonToObject <SatyamTask>(satyamAggResult.TaskParameters); MultiObjectTrackingSubmittedJob job = JSonUtils.ConvertJSonToObject <MultiObjectTrackingSubmittedJob>(aggTask.jobEntry.JobParameters); TrackletLabelingAggregatedResult aggresult = JSonUtils.ConvertJSonToObject <TrackletLabelingAggregatedResult>(satyamAggResult.AggregatedResultString); WebClient wb = new WebClient(); Stream aggTrackStream = wb.OpenRead(aggresult.AggregatedTrackletsString_URL); StreamReader reader = new StreamReader(aggTrackStream); String aggTrackString = reader.ReadToEnd(); MultiObjectTrackingResult aggTracks = JSonUtils.ConvertJSonToObject <MultiObjectTrackingResult>(aggTrackString); string blobDir = URIUtilities.localDirectoryFullPathFromURI(aggTask.SatyamURI); List <string> ImageURLs = satyamStorage.getURLListOfSpecificExtensionUnderSubDirectoryByURI(blobDir, new List <string>() { "jpg", "png" }); string videoName = URIUtilities.localDirectoryNameFromURI(blobDir) + "_" + URIUtilities.filenameFromURINoExtension(aggTask.SatyamURI) + "_" + entry.ID; MultiObjectTrackingAnalyzer.generateVideoForEvaluation(ImageURLs, aggTracks, directoryName, videoName, job.FrameRate); } }
public static void SaveResultVideosLocally(List <SatyamResultsTableEntry> entries, string directoryName, int fps = 10) { directoryName = directoryName + "\\Raw"; if (!Directory.Exists(directoryName)) { Directory.CreateDirectory(directoryName); } SatyamJobStorageAccountAccess satyamStorage = new SatyamJobStorageAccountAccess(); for (int i = 0; i < entries.Count; i++) { SatyamResultsTableEntry entry = entries[i]; SatyamResult satyamResult = JSonUtils.ConvertJSonToObject <SatyamResult>(entry.ResultString); SatyamTask task = JSonUtils.ConvertJSonToObject <SatyamTask>(satyamResult.TaskParametersString); MultiObjectTrackingSubmittedJob job = JSonUtils.ConvertJSonToObject <MultiObjectTrackingSubmittedJob>(task.jobEntry.JobParameters); string blobDir = URIUtilities.localDirectoryFullPathFromURI(task.SatyamURI); //VATIC_DVA_CrowdsourcedResult taskr = new VATIC_DVA_CrowdsourcedResult(satyamResult.TaskResult, task.SatyamURI, start, end, task.SatyamJobSubmissionsTableEntryID.ToString()); VATIC_DVA_CrowdsourcedResult taskr = MultiObjectTrackingAggregator.createVATIC_DVA_CrowdsourcedResultUsingSatyamBlobImageCount(satyamResult.TaskResult, blobDir, entry.ID.ToString(), job.FrameRate); MultiObjectTrackingResult res = taskr.getCompressedTracksInTimeSegment(); List <string> ImageURLs = satyamStorage.getURLListOfSpecificExtensionUnderSubDirectoryByURI(blobDir, new List <string>() { "jpg", "png" }); string videoName = URIUtilities.localDirectoryNameFromURI(blobDir) + "_" + URIUtilities.filenameFromURINoExtension(task.SatyamURI) + "_" + entry.ID; MultiObjectTrackingAnalyzer.generateVideoForEvaluation(ImageURLs, res, directoryName, videoName, job.FrameRate); } }
public static MultiObjectTrackingResult stitchAllChunksAllObjectsOfOneVideo(List <SatyamAggregatedResultsTableEntry> entries, out List <string> ImageURLs, out int fps) { ImageURLs = new List <string>(); fps = 0; if (entries.Count == 0) { return(null); } SatyamJobStorageAccountAccess satyamStorage = new SatyamJobStorageAccountAccess(); MultiObjectTrackingResult stitched = new MultiObjectTrackingResult(); int totalFrameCounts = 0; // ensure the order is correct SortedDictionary <int, List <SatyamAggregatedResultsTableEntry> > sortedEntries = new SortedDictionary <int, List <SatyamAggregatedResultsTableEntry> >(); List <int> idx = new List <int>(); for (int i = 0; i < entries.Count; i++) { SatyamAggregatedResultsTableEntry entry = entries[i]; SatyamAggregatedResult satyamAggResult = JSonUtils.ConvertJSonToObject <SatyamAggregatedResult>(entry.ResultString); SatyamTask aggTask = JSonUtils.ConvertJSonToObject <SatyamTask>(satyamAggResult.TaskParameters); string video = URIUtilities.localDirectoryNameFromURI(aggTask.SatyamURI); string[] fields = video.Split('_'); int startingFrame = Convert.ToInt32(fields[fields.Length - 1]); if (!sortedEntries.ContainsKey(startingFrame)) { sortedEntries.Add(startingFrame, new List <SatyamAggregatedResultsTableEntry>()); idx.Add(startingFrame); } sortedEntries[startingFrame].Add(entries[i]); } idx.Sort(); List <string> AggObjIds = new List <string>(); for (int i = 0; i < idx.Count; i++) { int noFramesOverlap = 0; string blobDir = ""; // grouping all objects that belong to the same chunk MultiObjectTrackingResult aggTracksOfAllObjectsPerChunk = new MultiObjectTrackingResult(); List <string> objIds = new List <string>(); for (int j = 0; j < sortedEntries[idx[i]].Count; j++) { SatyamAggregatedResultsTableEntry entry = sortedEntries[idx[i]][j]; SatyamAggregatedResult satyamAggResult = JSonUtils.ConvertJSonToObject <SatyamAggregatedResult>(entry.ResultString); SatyamTask aggTask = JSonUtils.ConvertJSonToObject <SatyamTask>(satyamAggResult.TaskParameters); MultiObjectTrackingSubmittedJob job = JSonUtils.ConvertJSonToObject <MultiObjectTrackingSubmittedJob>(aggTask.jobEntry.JobParameters); if (job.ChunkOverlap != 0.0) { noFramesOverlap = (int)(job.ChunkOverlap * job.FrameRate); } fps = job.FrameRate; blobDir = URIUtilities.localDirectoryFullPathFromURI(aggTask.SatyamURI); string objId = URIUtilities.filenameFromURINoExtension(aggTask.SatyamURI); objIds.Add(objId); TrackletLabelingAggregatedResult aggresult = JSonUtils.ConvertJSonToObject <TrackletLabelingAggregatedResult>(satyamAggResult.AggregatedResultString); WebClient wb = new WebClient(); Stream aggTrackStream = wb.OpenRead(aggresult.AggregatedTrackletsString_URL); StreamReader reader = new StreamReader(aggTrackStream); String aggTrackString = reader.ReadToEnd(); MultiObjectTrackingResult aggTracks = JSonUtils.ConvertJSonToObject <MultiObjectTrackingResult>(aggTrackString); if (aggTracksOfAllObjectsPerChunk.tracks.Count == 0) { aggTracksOfAllObjectsPerChunk = aggTracks; } else { for (int k = 0; k < aggTracks.tracks.Count; k++) { aggTracksOfAllObjectsPerChunk.tracks.Add(aggTracks.tracks[k]); } } } List <string> TraceURLs = satyamStorage.getURLListOfSpecificExtensionUnderSubDirectoryByURI(blobDir, new List <string>() { "jpg", "png" }); if (i == 0) { ImageURLs.AddRange(TraceURLs); stitched = aggTracksOfAllObjectsPerChunk; totalFrameCounts += TraceURLs.Count; AggObjIds = objIds; } else { int noNewFrames = 0; for (int j = noFramesOverlap; j < TraceURLs.Count; j++) { ImageURLs.Add(TraceURLs[j]); noNewFrames++; } //stitched = MultiObjectTrackingAnalyzer.stitchTwoTracesByTubeletsOfOverlappingVideoChunk(stitched, // aggTracksOfAllObjectsPerChunk, totalFrameCounts, totalFrameCounts + noNewFrames, noFramesOverlap, fps); // postpone the agg trace double frameTimeInMiliSeconds = (double)1000 / (double)fps; double timeToPostponeInMilliSeconds = (double)(totalFrameCounts - noFramesOverlap) * frameTimeInMiliSeconds; //TimeSpan timeSpanToPostponeInSeconds = new TimeSpan(0,0,0,0, (int)timeToPostponeInMilliSeconds); TimeSpan timeSpanToPostponeInSeconds = DateTimeUtilities.getTimeSpanFromTotalMilliSeconds((int)timeToPostponeInMilliSeconds); aggTracksOfAllObjectsPerChunk.postpone(timeSpanToPostponeInSeconds); // overlap must be 0 for (int k = 0; k < aggTracksOfAllObjectsPerChunk.tracks.Count; k++) { if (!AggObjIds.Contains(objIds[k])) { stitched.tracks.Add(aggTracksOfAllObjectsPerChunk.tracks[k]); AggObjIds.Add(objIds[k]); } else { // stitch the track for the same id int tckIdx = AggObjIds.IndexOf(objIds[k]); stitched.tracks[tckIdx] = CompressedTrack.stitchTwoAdjacentTrack(stitched.tracks[tckIdx], aggTracksOfAllObjectsPerChunk.tracks[k]); } } totalFrameCounts += noNewFrames; } //debug //generateVideoForEvaluation(ImageURLs, stitched, directoryName + "_" + i, videoName, fps); } return(stitched); }
public static void SaveResultImagesLocally(List <SatyamResultsTableEntry> entries, string directoryName) { if (!Directory.Exists(directoryName)) { Directory.CreateDirectory(directoryName); } directoryName = directoryName + "\\Raw"; if (!Directory.Exists(directoryName)) { Directory.CreateDirectory(directoryName); } // sort by task id SortedDictionary <int, List <SatyamResultsTableEntry> > taskResults = new SortedDictionary <int, List <SatyamResultsTableEntry> >(); for (int i = 0; i < entries.Count; i++) { if (!taskResults.ContainsKey(entries[i].SatyamTaskTableEntryID)) { taskResults.Add(entries[i].SatyamTaskTableEntryID, new List <SatyamResultsTableEntry>()); } taskResults[entries[i].SatyamTaskTableEntryID].Add(entries[i]); } foreach (int taskID in taskResults.Keys) { for (int i = 0; i < taskResults[taskID].Count; i++) { SatyamResultsTableEntry entry = taskResults[taskID][i]; SatyamResult satyamResult = JSonUtils.ConvertJSonToObject <SatyamResult>(entry.ResultString); SatyamTask task = JSonUtils.ConvertJSonToObject <SatyamTask>(satyamResult.TaskParametersString); SatyamJob job = task.jobEntry; ImageSegmentationResult res = JSonUtils.ConvertJSonToObject <ImageSegmentationResult>(satyamResult.TaskResult); if (res == null) { continue; } string fileName = URIUtilities.filenameFromURINoExtension(task.SatyamURI); fileName = fileName + "-Result"; if (satyamResult.amazonInfo.AssignmentID != "") { fileName = fileName + "-" + satyamResult.amazonInfo.AssignmentID; } fileName += "-" + entry.ID; if (File.Exists(directoryName + "\\" + fileName + ".jpg")) { continue; } Console.WriteLine("Saving Turker Result {0}", fileName); Image originalImage = ImageUtilities.getImageFromURI(task.SatyamURI); Image ResultImage = DrawResultsOnImage(res, originalImage); byte[] png = ImageSegmentationResult.PolygonResult2Bitmap(res); if (ResultImage == null) { continue; } ImageUtilities.saveImage(ResultImage, directoryName, fileName); ImageUtilities.savePNGRawData(directoryName + "\\" + fileName + "_bitmap.jpg", originalImage.Width, originalImage.Height, png); } } }
public static bool ProcessAndUploadToAzureBlob(SatyamJobSubmissionsTableAccessEntry jobEntry) { // if the input is a folder of folders of frames, then copy directly SatyamJobStorageAccountAccess satyamStorage = new SatyamJobStorageAccountAccess(); string satyamContainerName = SatyamTaskGenerator.JobTemplateToSatyamContainerNameMap[jobEntry.JobTemplateType]; string GUID = jobEntry.JobGUID; string satyamDirectoryName = GUID; SatyamJob job = JSonUtils.ConvertJSonToObject <SatyamJob>(jobEntry.JobParametersString); MultiObjectTrackingSubmittedJob jobParams = JSonUtils.ConvertJSonToObject <MultiObjectTrackingSubmittedJob>(job.JobParameters); BlobContainerManager bcm = new BlobContainerManager(); string status = bcm.Connect(job.azureInformation.AzureBlobStorageConnectionString); List <string> FileTypes = SatyamTaskGenerator.ValidFileTypesByTemplate[job.JobTemplateType]; if (status != "SUCCESS") { return(false); } string guidFolder = DirectoryConstants.defaultTempDirectory + "\\" + GUID; Directory.CreateDirectory(guidFolder); int chunkLength = jobParams.ChunkDuration; // sec int outputFPS = jobParams.FrameRate; double chunkOverlap = jobParams.ChunkOverlap; // sec var client = new WebClient(); if (jobParams.DataSrcFormat == DataFormat.Video) { // sample to frames int noFramePerChunk = (int)(chunkLength * outputFPS); int noFrameOverlap = (int)(chunkOverlap * outputFPS); List <string> videoUrls = bcm.getURLList(job.azureInformation.AzureBlobStorageContainerName, job.azureInformation.AzureBlobStorageContainerDirectoryName); foreach (string video in videoUrls) { string videoName = URIUtilities.filenameFromURINoExtension(video); string videonameExtension = URIUtilities.filenameFromURI(video); string outputDirectory = guidFolder + "\\" + videoName; Directory.CreateDirectory(outputDirectory); client.DownloadFile(video, outputDirectory + "\\" + videonameExtension); FFMpegWrappers.ExtractFrames(DirectoryConstants.ffmpeg, outputDirectory + "\\" + videonameExtension, outputDirectory, videoName, DateTime.Now, outputFPS); Console.WriteLine("deleting downloaded file..."); File.Delete(outputDirectory + "\\" + videonameExtension); GroupFramesIntoChunksAndUploadChunks(videoName, outputDirectory, noFramePerChunk, noFrameOverlap, satyamContainerName, satyamDirectoryName); Directory.Delete(outputDirectory, true); } } if (jobParams.DataSrcFormat == DataFormat.VideoFrame) { int noFramePerChunk = (int)(chunkLength * outputFPS);//just use one fps for now, assume input should've already downsampled int noFrameOverlap = (int)(chunkOverlap * outputFPS); // chunk according to parameters List <string> frameUrls = bcm.getURLList(job.azureInformation.AzureBlobStorageContainerName, job.azureInformation.AzureBlobStorageContainerDirectoryName); Dictionary <string, List <string> > framesPerVideo = new Dictionary <string, List <string> >(); foreach (string url in frameUrls) { // assumed hierarchy: blob/directory.../videoname/frameid.jpg //string frameName = URIUtilities.filenameFromURINoExtension(url); string[] urlparts = url.Split('/'); string videoName = urlparts[urlparts.Length - 2]; if (!framesPerVideo.ContainsKey(videoName)) { framesPerVideo.Add(videoName, new List <string>()); } framesPerVideo[videoName].Add(url); } foreach (string video in framesPerVideo.Keys) { string outputDirectory = guidFolder + "\\" + video; Directory.CreateDirectory(outputDirectory); foreach (string frameURL in framesPerVideo[video]) { string frameName = URIUtilities.filenameFromURI(frameURL); client.DownloadFile(frameURL, outputDirectory + "\\" + frameName); } GroupFramesIntoChunksAndUploadChunks(video, outputDirectory, noFramePerChunk, noFrameOverlap, satyamContainerName, satyamDirectoryName); Directory.Delete(outputDirectory, true); } } return(true); }
public static ImageSegmentationAggregatedResult getAggregatedResult(List <ImageSegmentationResult> originalResults, string SatyamURL, string guid, int MinResults = TaskConstants.IMAGE_SEGMENTATION_MTURK_MIN_RESULTS_TO_AGGREGATE, int MaxResults = TaskConstants.IMAGE_SEGMENTATION_MTURK_MAX_RESULTS_TO_AGGREGATE, double CategoryMajorityThreshold = TaskConstants.IMAGE_SEGMENTATION_MTURK_MAJORITY_CATEGORY_THRESHOLD, double PolygonBoundaryMajorityThreshold = TaskConstants.IMAGE_SEGMENTATION_MTURK_MAJORITY_POLYGON_BOUNDARY_THRESHOLD, double ObjectsCoverageThreshold = TaskConstants.IMAGE_SEGMENTATION_MTURK_OBJECT_COVERAGE_THRESHOLD_FOR_AGGREGATION_TERMINATION, double minSimilarityThreshold = TaskConstants.IMAGE_SEGMENTATION_MTURK_POLYGON_IOU_THRESHOLD, int minResultsForConsensus = TaskConstants.IMAGE_SEGMENTATION_MTURK_MIN_RESULTS_FOR_CONSENSUS ) { List <ImageSegmentationResult> results = new List <ImageSegmentationResult>(); // Warning: filter empty results: strong assumption that there has to be something for now!!! for (int i = 0; i < originalResults.Count; i++) { if (originalResults[i] != null && originalResults[i].objects.Count != 0) { results.Add(originalResults[i]); } } Console.WriteLine("Filetered Results: {0}", results.Count); if (results.Count < MinResults) //need at least three results! { return(null); } int ImageWidth = results[0].imageWidth; int ImageHeight = results[0].imageHeight; //auto padding data to make the stride a multiple of 4. required by bmpdata for output int paddedWidth = ImageWidth; if (paddedWidth % 4 != 0) { paddedWidth = (paddedWidth / 4 + 1) * 4; } byte[] PNG = new byte[ImageHeight * paddedWidth]; ImageSegmentationAggregatedResult aggResult = new ImageSegmentationAggregatedResult(); aggResult.metaData = new ImageSegmentationAggregatedResultMetaData(); aggResult.metaData.TotalCount = results.Count; for (int i = 0; i < PNG.Length; i++) { PNG[i] = 0; } aggResult.boxesAndCategories = new ImageSegmentationResult(); aggResult.boxesAndCategories.objects = new List <ImageSegmentationResultSingleEntry>(); aggResult.boxesAndCategories.displayScaleReductionX = results[0].displayScaleReductionX; aggResult.boxesAndCategories.displayScaleReductionY = results[0].displayScaleReductionY; aggResult.boxesAndCategories.imageHeight = ImageHeight; aggResult.boxesAndCategories.imageWidth = ImageWidth; //first use multipartitie wieghted matching to associated the boxes disregarding the labels since //people might make mistake with lables but boxes are usually right List <List <Segment> > AllPolygons = new List <List <Segment> >(); List <int> noPolygonsPerResult = new List <int>(); foreach (ImageSegmentationResult res in results) { AllPolygons.Add(new List <Segment>()); if (res == null) { noPolygonsPerResult.Add(0); continue; } List <Segment> polygonList = AllPolygons[AllPolygons.Count - 1]; foreach (ImageSegmentationResultSingleEntry entry in res.objects) { polygonList.Add(entry.segment); } noPolygonsPerResult.Add(polygonList.Count); } //now associate boxes across the various results //List<MultipartiteWeightedMatch> polyAssociation = PolygonAssociation.computeGenericPolygonAssociations(AllPolygons); List <MultipartiteWeightedMatch> polyAssociation = GenericObjectAssociation.computeAssociations <Segment>(AllPolygons, Segment.computeIoU_PixelSweep); int noObjects = polyAssociation.Count; int noAssociatedPolygons = 0; //how many of the drawn boxes for each result were actually associated by two or more people for each user? SortedDictionary <int, int> noMultipleAssociatedPolygonsPerResult = new SortedDictionary <int, int>(); for (int i = 0; i < results.Count; i++) { noMultipleAssociatedPolygonsPerResult.Add(i, 0); } foreach (MultipartiteWeightedMatch match in polyAssociation) { if (match.elementList.Count > 1) //this has been corroborated by two people { noAssociatedPolygons++; foreach (KeyValuePair <int, int> entry in match.elementList) { noMultipleAssociatedPolygonsPerResult[entry.Key]++; } } } //count how many people have a high association ratio int noHighAssociationRatio = 0; for (int i = 0; i < results.Count; i++) { if (noPolygonsPerResult[i] == 0) { continue; } double ratio = (double)noMultipleAssociatedPolygonsPerResult[i] / (double)noPolygonsPerResult[i]; if (ratio > ObjectsCoverageThreshold) { noHighAssociationRatio++; } } if (noHighAssociationRatio < MinResults && results.Count < MaxResults) //at least three people should have all their boxes highly corroborated by one other person { return(null); } //int noAcceptedPolygons = 0; SortedDictionary <int, List <int> > noHighQualityAssociation = new SortedDictionary <int, List <int> >(); for (int idx = 0; idx < polyAssociation.Count; idx++) { MultipartiteWeightedMatch match = polyAssociation[idx]; List <Segment> polyList = new List <Segment>(); List <string> identifiers = new List <string>(); foreach (KeyValuePair <int, int> entry in match.elementList) { polyList.Add(AllPolygons[entry.Key][entry.Value]); identifiers.Add(entry.Key + "_" + entry.Value); } SegmentGroup majorityGroup = getMajorityGroupPolygons(identifiers, polyList, minSimilarityThreshold, match.weightMatrix); if (majorityGroup == null) { continue; } if (majorityGroup.segments.Count < minResultsForConsensus) { continue; } Segment aggregatedPolygon = new Segment();// dummy polygon byte[] png = GetAggregatedGenericPolygon_PixelSweep(majorityGroup.segments, ImageWidth, ImageHeight, PolygonBoundaryMajorityThreshold); // log where the results come from foreach (string id in majorityGroup.identifiers) { string[] fields = id.Split('_'); int k = Convert.ToInt32(fields[0]); int v = Convert.ToInt32(fields[1]); if (!noHighQualityAssociation.ContainsKey(k)) { noHighQualityAssociation.Add(k, new List <int>()); } noHighQualityAssociation[k].Add(v); } // category aggregation Dictionary <string, int> categoryNames = new Dictionary <string, int>(); int totalCount = match.elementList.Count; int maxCount = 0; string maxCategory = ""; foreach (KeyValuePair <int, int> entry in match.elementList) { string category = results[entry.Key].objects[entry.Value].Category; if (!categoryNames.ContainsKey(category)) { categoryNames.Add(category, 0); } categoryNames[category]++; if (maxCount < categoryNames[category]) { maxCount = categoryNames[category]; maxCategory = category; } } double probability = ((double)maxCount + 1) / ((double)totalCount + 2); if (probability < CategoryMajorityThreshold && results.Count < MaxResults) //this is not a valid category need more work { return(null); } // now we have one segment ready ImageSegmentationResultSingleEntry aggregated = new ImageSegmentationResultSingleEntry(); aggregated.segment = aggregatedPolygon; aggregated.Category = maxCategory; aggResult.boxesAndCategories.objects.Add(aggregated); for (int i = 0; i < ImageWidth; i++) { for (int j = 0; j < ImageHeight; j++) { int pospng = j * ImageWidth + i; int pos = j * paddedWidth + i; if (PNG[pos] == 0 && png[pospng] != 0) { PNG[pos] = (byte)(idx + 1); } } } } // check no. of high association results int noResultsWithHighQualityObjectCoverage = 0; for (int i = 0; i < results.Count; i++) { if (noPolygonsPerResult[i] == 0) { continue; } if (!noHighQualityAssociation.ContainsKey(i)) { continue; } double ratio = ((double)noHighQualityAssociation[i].Count) / (double)noPolygonsPerResult[i]; if (ratio > ObjectsCoverageThreshold) { noResultsWithHighQualityObjectCoverage++; } } if (noResultsWithHighQualityObjectCoverage < MinResults && results.Count < MaxResults) //at least three people should have most of their boxes highly corroborated by one other person { return(null); } // save and upload to azure string filename = URIUtilities.filenameFromURINoExtension(SatyamURL); //string filepath = DirectoryConstants.defaultTempDirectory + filename + "_aggregated.PNG"; string filepath = DirectoryConstants.defaultAzureTempDirectory + filename + "_aggregated.PNG"; ImageUtilities.savePNGRawData(filepath, ImageWidth, ImageHeight, PNG); SatyamJobStorageAccountAccess blob = new SatyamJobStorageAccountAccess(); string container = SatyamTaskGenerator.JobTemplateToSatyamContainerNameMap[TaskConstants.Segmentation_Image_MTurk]; string directoryPath = guid + "_aggregated"; blob.UploadALocalFile(filepath, container, directoryPath); aggResult.metaData.PNG_URL = TaskConstants.AzureBlobURL + container + "/" + directoryPath + "/" + filename + "_aggregated.PNG"; //clean up File.Delete(filepath); return(aggResult); }
/// <summary> /// function generalizable.. TODO... to all tasks /// </summary> /// <param name="guids"></param> /// <param name="IoUTreshold"></param> /// <param name="saveImage"></param> /// <param name="outputDirectory"></param> /// <param name="MinResults"></param> /// <param name="MaxResults"></param> /// <param name="CategoryMajorityThreshold"></param> /// <param name="PolygonBoundaryMajorityThreshold"></param> /// <param name="ObjectsCoverageThreshold"></param> /// <param name="overwrite"></param> /// <param name="approvalAnalysis"></param> public static void AggregateWithParameterAndValidatePascalVOCImageSegmentationByGUID(List <string> guids, double IoUTreshold, bool saveImage = false, string outputDirectory = null, int MinResults = TaskConstants.IMAGE_SEGMENTATION_MTURK_MIN_RESULTS_TO_AGGREGATE, int MaxResults = TaskConstants.IMAGE_SEGMENTATION_MTURK_MAX_RESULTS_TO_AGGREGATE, double CategoryMajorityThreshold = TaskConstants.IMAGE_SEGMENTATION_MTURK_MAJORITY_CATEGORY_THRESHOLD, double PolygonBoundaryMajorityThreshold = TaskConstants.IMAGE_SEGMENTATION_MTURK_MAJORITY_POLYGON_BOUNDARY_THRESHOLD, double ObjectsCoverageThreshold = TaskConstants.IMAGE_SEGMENTATION_MTURK_OBJECT_COVERAGE_THRESHOLD_FOR_AGGREGATION_TERMINATION, double minSimilarityThreshold = TaskConstants.IMAGE_SEGMENTATION_MTURK_POLYGON_IOU_THRESHOLD, int minResultsForConsensus = TaskConstants.IMAGE_SEGMENTATION_MTURK_MIN_RESULTS_FOR_CONSENSUS, bool overwrite = false, bool approvalAnalysis = false) { string configString = "Min_" + MinResults + "_Max_" + MaxResults + "_Majority_" + PolygonBoundaryMajorityThreshold + "_Ratio_" + ObjectsCoverageThreshold; Console.WriteLine("Aggregating for param set " + configString); if (!overwrite && File.Exists(DirectoryConstants.defaultTempDirectory + "\\ImageSegmentationResult\\" + configString + ".txt")) { return; } SatyamResultsTableAccess resultsDB = new SatyamResultsTableAccess(); Dictionary <int, List <string> > WorkersPerTask = new Dictionary <int, List <string> >(); List <SatyamResultsTableEntry> entries = new List <SatyamResultsTableEntry>(); foreach (string guid in guids) { entries.AddRange(resultsDB.getEntriesByGUIDOrderByID(guid)); } resultsDB.close(); SortedDictionary <DateTime, List <SatyamResultsTableEntry> > entriesBySubmitTime = SatyamResultValidationToolKit.SortResultsBySubmitTime_OneResultPerTurkerPerTask(entries); Dictionary <int, List <ImageSegmentationResult> > ResultsPerTask = new Dictionary <int, List <ImageSegmentationResult> >(); List <int> aggregatedTasks = new List <int>(); int noTotalConverged = 0; //int noCorrect = 0; int noTerminatedTasks = 0; List <SatyamAggregatedResultsTableEntry> aggEntries = new List <SatyamAggregatedResultsTableEntry>(); Dictionary <int, int> noResultsNeededForAggregation = SatyamResultsAnalysis.getNoResultsNeededForAggregationFromLog(configString, guids[0]); Dictionary <int, int> noResultsNeededForAggregation_new = new Dictionary <int, int>(); // play back by time foreach (DateTime t in entriesBySubmitTime.Keys) { //Console.WriteLine("Processing Results of time: {0}", t); List <SatyamResultsTableEntry> ResultEntries = entriesBySubmitTime[t]; foreach (SatyamResultsTableEntry entry in ResultEntries) { SatyamResult satyamResult = JSonUtils.ConvertJSonToObject <SatyamResult>(entry.ResultString); SatyamTask task = JSonUtils.ConvertJSonToObject <SatyamTask>(satyamResult.TaskParametersString); SatyamJob job = task.jobEntry; string fileName = URIUtilities.filenameFromURINoExtension(task.SatyamURI); int taskEntryID = entry.SatyamTaskTableEntryID; if (aggregatedTasks.Contains(taskEntryID)) { continue; } if (!ResultsPerTask.ContainsKey(taskEntryID)) { ResultsPerTask.Add(taskEntryID, new List <ImageSegmentationResult>()); } ResultsPerTask[taskEntryID].Add(JSonUtils.ConvertJSonToObject <ImageSegmentationResult>(satyamResult.TaskResult)); // check log if enough results are collected if (noResultsNeededForAggregation != null && noResultsNeededForAggregation.ContainsKey(taskEntryID) && ResultsPerTask[taskEntryID].Count < noResultsNeededForAggregation[taskEntryID]) { continue; } ImageSegmentationAggregatedResult aggResult = ImageSegmentationAggregator.getAggregatedResult( ResultsPerTask[taskEntryID], task.SatyamURI, entry.JobGUID, MinResults, MaxResults, CategoryMajorityThreshold, PolygonBoundaryMajorityThreshold, ObjectsCoverageThreshold, minSimilarityThreshold, minResultsForConsensus); if (aggResult == null) { continue; } // aggregation happen // record logs if (noResultsNeededForAggregation == null || !noResultsNeededForAggregation.ContainsKey(taskEntryID)) { noResultsNeededForAggregation_new.Add(taskEntryID, ResultsPerTask[taskEntryID].Count); } aggregatedTasks.Add(taskEntryID); noTotalConverged++; if (ResultsPerTask[taskEntryID].Count >= MaxResults) { noTerminatedTasks++; } SatyamAggregatedResult SatyamAggResult = new SatyamAggregatedResult(); SatyamAggResult.SatyamTaskTableEntryID = taskEntryID; SatyamAggResult.AggregatedResultString = JSonUtils.ConvertObjectToJSon <ImageSegmentationAggregatedResult>(aggResult); SatyamAggResult.TaskParameters = JSonUtils.ConvertJSonToObject <SatyamResult>(entry.ResultString).TaskParametersString; SatyamAggregatedResultsTableEntry aggEntry = new SatyamAggregatedResultsTableEntry(); aggEntry.SatyamTaskTableEntryID = taskEntryID; aggEntry.JobGUID = entry.JobGUID; aggEntry.ResultString = JSonUtils.ConvertObjectToJSon <SatyamAggregatedResult>(SatyamAggResult); aggEntries.Add(aggEntry); List <SatyamAggregatedResultsTableEntry> tmpEntries = new List <SatyamAggregatedResultsTableEntry>(); tmpEntries.Add(aggEntry); //ValidateSatyamKITTIDetectionAggregationResult(tmpEntries, saveImage, MinHeight, MaxOcclusion, Max_Truncation); } } Console.WriteLine("Total_Aggregated_Tasks: {0}", noTotalConverged); Console.WriteLine("Total_Terminated_Tasks: {0}", noTerminatedTasks); SatyamResultsAnalysis.RecordAggregationLog(noResultsNeededForAggregation_new, configString, guids[0]); string r = ValidatePascalVOCImageSegmentationResult_InstanceLevel(aggEntries, IoUTreshold); r = noTotalConverged + " " + noTerminatedTasks + " " + r; File.WriteAllText(DirectoryConstants.defaultTempDirectory + "\\ImageSegmentationResult\\" + configString + ".txt", r); if (approvalAnalysis) { string approvalString = configString + "_PayCover_" + TaskConstants.IMAGE_SEGMENTATION_MTURK_OBJECT_COVERAGE_THRESHOLD_FOR_PAYMENT + "_PayIoU_" + TaskConstants.IMAGE_SEGMENTATION_MTURK_POLYGON_IOU_THRESHOLD_FOR_PAYMENT; //for (double ratio = 0; ratio < 1; ratio += 0.2) //{ // SatyamResultsAnalysis.AnalyzeApprovalRate(aggEntries, entriesBySubmitTime, noResultsNeededForAggregation, noResultsNeededForAggregation_new, guids[0], configString, approvalRatioThreshold: ratio); //} SatyamResultsAnalysis.AggregationAnalysis(aggEntries, entriesBySubmitTime, noResultsNeededForAggregation, noResultsNeededForAggregation_new, guids[0], configString); } }
public static void StaticOfflineAggregationWithParameterAndValidation(List <string> guids, double IoUTreshold, int MinResults = TaskConstants.IMAGE_SEGMENTATION_MTURK_MIN_RESULTS_TO_AGGREGATE, int MaxResults = TaskConstants.IMAGE_SEGMENTATION_MTURK_MAX_RESULTS_TO_AGGREGATE, double CategoryMajorityThreshold = TaskConstants.IMAGE_SEGMENTATION_MTURK_MAJORITY_CATEGORY_THRESHOLD, double PolygonBoundaryMajorityThreshold = TaskConstants.IMAGE_SEGMENTATION_MTURK_MAJORITY_POLYGON_BOUNDARY_THRESHOLD, double ObjectsCoverageThreshold = TaskConstants.IMAGE_SEGMENTATION_MTURK_OBJECT_COVERAGE_THRESHOLD_FOR_AGGREGATION_TERMINATION, double minSimilarityThreshold = TaskConstants.IMAGE_SEGMENTATION_MTURK_POLYGON_IOU_THRESHOLD, int minResultsForConsensus = TaskConstants.IMAGE_SEGMENTATION_MTURK_MIN_RESULTS_FOR_CONSENSUS) { SatyamResultsTableAccess resultsDB = new SatyamResultsTableAccess(); Dictionary <int, List <string> > WorkersPerTask = new Dictionary <int, List <string> >(); List <SatyamResultsTableEntry> entries = new List <SatyamResultsTableEntry>(); foreach (string guid in guids) { entries.AddRange(resultsDB.getEntriesByGUIDOrderByID(guid)); } resultsDB.close(); SortedDictionary <int, List <SatyamResultsTableEntry> > EntriesPerTask = new SortedDictionary <int, List <SatyamResultsTableEntry> >(); SortedDictionary <int, List <ImageSegmentationResult> > ResultsPerTask = new SortedDictionary <int, List <ImageSegmentationResult> >(); List <int> aggregatedTasks = new List <int>(); int noTotalConverged = 0; //int noCorrect = 0; int noTerminatedTasks = 0; List <SatyamAggregatedResultsTableEntry> aggEntries = new List <SatyamAggregatedResultsTableEntry>(); // Organize by taskID foreach (SatyamResultsTableEntry entry in entries) { SatyamResult satyamResult = JSonUtils.ConvertJSonToObject <SatyamResult>(entry.ResultString); int taskEntryID = entry.SatyamTaskTableEntryID; if (!EntriesPerTask.ContainsKey(taskEntryID)) { EntriesPerTask.Add(taskEntryID, new List <SatyamResultsTableEntry>()); ResultsPerTask.Add(taskEntryID, new List <ImageSegmentationResult>()); } EntriesPerTask[taskEntryID].Add(entry); ResultsPerTask[taskEntryID].Add(JSonUtils.ConvertJSonToObject <ImageSegmentationResult>(satyamResult.TaskResult)); } foreach (int taskEntryID in EntriesPerTask.Keys) { SatyamResult satyamResult = JSonUtils.ConvertJSonToObject <SatyamResult>(EntriesPerTask[taskEntryID][0].ResultString); SatyamTask task = JSonUtils.ConvertJSonToObject <SatyamTask>(satyamResult.TaskParametersString); SatyamJob job = task.jobEntry; string fileName = URIUtilities.filenameFromURINoExtension(task.SatyamURI); List <int> taskidfilter = new List <int>() { 40430, 40432, 40433, 40434, 40440, 40447, 40451, 40460, }; //if (fileName != "2007_000549") continue; if (!taskidfilter.Contains(satyamResult.TaskTableEntryID)) { continue; } Console.WriteLine("Aggregating task {0}: {1} results", taskEntryID, EntriesPerTask[taskEntryID].Count); ImageSegmentationAggregatedResult aggResult = ImageSegmentationAggregator.getAggregatedResult( ResultsPerTask[taskEntryID], task.SatyamURI, job.JobGUIDString, MinResults, MaxResults, CategoryMajorityThreshold, PolygonBoundaryMajorityThreshold, ObjectsCoverageThreshold, minSimilarityThreshold, minResultsForConsensus); if (aggResult == null) { continue; } // aggregation happen aggregatedTasks.Add(taskEntryID); noTotalConverged++; if (ResultsPerTask[taskEntryID].Count >= MaxResults) { noTerminatedTasks++; } SatyamAggregatedResult SatyamAggResult = new SatyamAggregatedResult(); SatyamAggResult.SatyamTaskTableEntryID = taskEntryID; SatyamAggResult.AggregatedResultString = JSonUtils.ConvertObjectToJSon <ImageSegmentationAggregatedResult>(aggResult); SatyamAggResult.TaskParameters = satyamResult.TaskParametersString; SatyamAggregatedResultsTableEntry aggEntry = new SatyamAggregatedResultsTableEntry(); aggEntry.SatyamTaskTableEntryID = taskEntryID; aggEntry.JobGUID = job.JobGUIDString; aggEntry.ResultString = JSonUtils.ConvertObjectToJSon <SatyamAggregatedResult>(SatyamAggResult); aggEntries.Add(aggEntry); List <SatyamAggregatedResultsTableEntry> tmpEntries = new List <SatyamAggregatedResultsTableEntry>(); tmpEntries.Add(aggEntry); ValidatePascalVOCImageSegmentationResult_InstanceLevel(tmpEntries, IoUTreshold); } Console.WriteLine("Total_Aggregated_Tasks: {0}", noTotalConverged); Console.WriteLine("Total_Terminated_Tasks: {0}", noTerminatedTasks); string r = ValidatePascalVOCImageSegmentationResult_InstanceLevel(aggEntries, IoUTreshold); }
public static void ValidatePascalVOCImageSegmentationResult_ClassLevel( List <SatyamAggregatedResultsTableEntry> resultsPerImage, List <double> IoUTresholds) { SortedDictionary <int, SatyamAggregatedResultsTableEntry> aggResults = new SortedDictionary <int, SatyamAggregatedResultsTableEntry>(); for (int i = 0; i < resultsPerImage.Count; i++) { int taskID = resultsPerImage[i].SatyamTaskTableEntryID; aggResults.Add(taskID, resultsPerImage[i]); } SortedDictionary <double, int> tpPerIoU = new SortedDictionary <double, int>(); SortedDictionary <double, int> fpPerIoU = new SortedDictionary <double, int>(); SortedDictionary <double, int> fnPerIoU = new SortedDictionary <double, int>(); foreach (double iou in IoUTresholds) { tpPerIoU.Add(iou, 0); fpPerIoU.Add(iou, 0); fnPerIoU.Add(iou, 0); } foreach (int id in aggResults.Keys) { SatyamSaveAggregatedDataSatyam data = new SatyamSaveAggregatedDataSatyam(aggResults[id]); string fileName = URIUtilities.filenameFromURINoExtension(data.SatyamURI); PascalVOCSegmentationGroundTruth gt = new PascalVOCSegmentationGroundTruth(fileName); Console.WriteLine("Results for {0}", fileName); String resultString = data.AggregatedResultString; ImageSegmentationAggregatedResult result = JSonUtils.ConvertJSonToObject <ImageSegmentationAggregatedResult>(resultString); string PNG_URL = result.metaData.PNG_URL; //List<List<double>> IoUs = gt.getIoUs(result.boxesAndCategories); SortedDictionary <int, int> noGroundTruthPixels = new SortedDictionary <int, int>(); SortedDictionary <int, int> noDetectionPixels = new SortedDictionary <int, int>(); //List<List<double>> IoUs = gt.getIoUs(PNG_URL, out noDetectionPixels, out noGroundTruthPixels); List <List <double> > IoUs = gt.getGTOverlaps(PNG_URL, out noDetectionPixels, out noGroundTruthPixels); List <int> DetectionAreas = noDetectionPixels.Values.ToList(); List <int> GroundtruthAreas = noGroundTruthPixels.Values.ToList(); if (IoUs == null) { continue; } //double smallAreaToIgnore = 1000;//px //double smallAreaToIgnore = 625;//px double smallAreaToIgnore = 1600;//px List <int> matchedDetections = new List <int>(); for (int i = 0; i < IoUs.Count; i++) { if (GroundtruthAreas[i] < smallAreaToIgnore) { continue; } List <double> ious = IoUs[i]; double maxIoU = 0; int idx = -1; for (int j = 0; j < ious.Count; j++) { if (ious[j] > maxIoU) { maxIoU = ious[j]; idx = j; } } if (maxIoU == 0) { Console.WriteLine("No Match"); foreach (double iou in IoUTresholds) { fnPerIoU[iou]++; } continue; } if (DetectionAreas[idx] < smallAreaToIgnore) { continue; } Console.WriteLine("Match: {0}", maxIoU); matchedDetections.Add(idx); foreach (double iou in IoUTresholds) { if (maxIoU >= iou) { tpPerIoU[iou]++; } else { fpPerIoU[iou]++; fnPerIoU[iou]++; } } } for (int j = 0; j < IoUs[0].Count; j++) { if (matchedDetections.Contains(j)) { continue; } if (DetectionAreas[j] < smallAreaToIgnore) { continue; } double maxIoU = 0; int idx = -1; for (int i = 0; i < IoUs.Count; i++) { if (IoUs[i][j] > maxIoU) { maxIoU = IoUs[i][j]; idx = j; } } bool alreadyCounted = false; foreach (double iou in IoUTresholds) { if (maxIoU >= iou) { alreadyCounted = true; break; } } if (alreadyCounted) { continue; } Console.WriteLine("No Groundtruth"); foreach (double iou in IoUTresholds) { fpPerIoU[iou]++; } } } double AvgPrec = 0; foreach (double iou in IoUTresholds) { int tp = tpPerIoU[iou] + missingGroundTruth.Count; int fp = fpPerIoU[iou] - missingGroundTruth.Count; int fn = fnPerIoU[iou] - GroundTruthFilter.Count; double ap = (double)tp / (double)(tp + fp + fn); double prec = (double)tp / (double)(tp + fp); double recl = (double)tp / (double)(tp + fn); string ret = String.Format("TP: {0}, FP: {1}, FN {2}, AP, {3}, Precision, {4}, Recall, {5}", tp, fp, fn, ap, prec, recl); Console.WriteLine(ret); AvgPrec += prec; } AvgPrec /= IoUTresholds.Count; Console.WriteLine("AvgPrec :{0}", AvgPrec); }
public static string ValidatePascalVOCImageSegmentationResult_InstanceLevel( List <SatyamAggregatedResultsTableEntry> resultsPerImage, double IoUTreshold) { SortedDictionary <int, SatyamAggregatedResultsTableEntry> aggResults = new SortedDictionary <int, SatyamAggregatedResultsTableEntry>(); for (int i = 0; i < resultsPerImage.Count; i++) { int taskID = resultsPerImage[i].SatyamTaskTableEntryID; aggResults.Add(taskID, resultsPerImage[i]); } int tp = 0; int fp = 0; int fn = 0; foreach (int id in aggResults.Keys) { SatyamSaveAggregatedDataSatyam data = new SatyamSaveAggregatedDataSatyam(aggResults[id]); string fileName = URIUtilities.filenameFromURINoExtension(data.SatyamURI); PascalVOCSegmentationGroundTruth gt = new PascalVOCSegmentationGroundTruth(fileName); Console.WriteLine("Results for {0}", fileName); String resultString = data.AggregatedResultString; ImageSegmentationAggregatedResult result = JSonUtils.ConvertJSonToObject <ImageSegmentationAggregatedResult>(resultString); string PNG_URL = result.metaData.PNG_URL; //List<List<double>> IoUs = gt.getIoUs(result.boxesAndCategories); SortedDictionary <int, int> noGroundTruthPixels = new SortedDictionary <int, int>(); SortedDictionary <int, int> noDetectionPixels = new SortedDictionary <int, int>(); List <List <double> > IoUs = gt.getIoUs(PNG_URL, out noDetectionPixels, out noGroundTruthPixels); List <int> DetectionAreas = noDetectionPixels.Values.ToList(); List <int> GroundtruthAreas = noGroundTruthPixels.Values.ToList(); if (IoUs == null) { continue; } MultipartiteWeightTensor matches = new MultipartiteWeightTensor(2); matches.setNumPartitionElements(0, IoUs.Count); matches.setNumPartitionElements(1, IoUs[0].Count); double[,] array = new double[IoUs.Count, IoUs[0].Count]; for (int j = 0; j < IoUs.Count; j++) { for (int k = 0; k < IoUs[0].Count; k++) { array[j, k] = IoUs[j][k]; } } matches.setWeightMatrix(0, 1, array); MultipartiteWeightedMatching.GreedyMean matching = new MultipartiteWeightedMatching.GreedyMean(); List <MultipartiteWeightedMatch> polygonAssociation = matching.getMatching(matches); //double smallAreaToIgnore = 1000;//px //double smallAreaToIgnore = 625;//px double smallAreaToIgnore = 1600;//px foreach (MultipartiteWeightedMatch match in polygonAssociation) { if (match.elementList.ContainsKey(0)) // this contains gt { if (GroundtruthAreas[match.elementList[0]] < smallAreaToIgnore) { continue; } if (match.elementList.ContainsKey(1)) // an aggregated result box has been associated { if (DetectionAreas[match.elementList[1]] < smallAreaToIgnore) { continue; } double IoU = IoUs[match.elementList[0]][match.elementList[1]]; Console.WriteLine("Match: {0}", IoU); if (IoU >= IoUTreshold) { tp++; } else { fp++; fn++; } } else { Console.WriteLine("No Match"); fn++; } } else { if (DetectionAreas[match.elementList[1]] < smallAreaToIgnore) { continue; } Console.WriteLine("No Groundtruth"); fp++; } } } double ap = (double)tp / (double)(tp + fp + fn); double prec = (double)tp / (double)(tp + fp); double recl = (double)tp / (double)(tp + fn); string ret = String.Format("TP: {0}, FP: {1}, FN {2}, AP, {3}, Precision, {4}, Recall, {5}", tp, fp, fn, ap, prec, recl); Console.WriteLine(ret); return(ret); }