コード例 #1
0
        private static void ValidateSatyamCARPKObjectCountingAggregationResult(List <SatyamAggregatedResultsTableEntry> aggResultEntries,
                                                                               out double totalError, out double totalGroundTruth)
        {
            List <double> aggResultCounts   = new List <double>();
            List <int>    GroundTruthCounts = new List <int>();
            List <double> abs_errors        = new List <double>();
            List <double> errors            = new List <double>();

            foreach (SatyamAggregatedResultsTableEntry aggResultEntry in aggResultEntries)
            {
                SatyamSaveAggregatedDataSatyam data = new SatyamSaveAggregatedDataSatyam(aggResultEntry);
                string fileName      = URIUtilities.filenameFromURINoExtension(data.SatyamURI);
                string labelFilePath = DirectoryConstants.CARPKCountingLabels + fileName + ".txt";

                string[] labels           = File.ReadAllLines(labelFilePath);
                int      GroundtruthCount = labels.Length;

                string jobGUID      = aggResultEntry.JobGUID;
                int    taskID       = aggResultEntry.SatyamTaskTableEntryID;
                String resultString = data.AggregatedResultString;
                ObjectCountingAggregatedResult result = JSonUtils.ConvertJSonToObject <ObjectCountingAggregatedResult>(resultString);


                aggResultCounts.Add(result.Count);
                GroundTruthCounts.Add(GroundtruthCount);
                abs_errors.Add(Math.Abs(GroundtruthCount - result.Count));
                errors.Add(GroundtruthCount - result.Count);
            }
            totalError       = abs_errors.Sum();
            totalGroundTruth = GroundTruthCounts.Sum();
            double totalErrorRatio = totalError / totalGroundTruth;

            Console.WriteLine("Error: {0} / {1} = {2}", totalError, totalGroundTruth, totalErrorRatio);
            Console.WriteLine("Total Aggregated {0}", aggResultEntries.Count);
        }
コード例 #2
0
        public static bool AggregatedResultEqualsGroundTruth(string satyamUri, string resultString)
        {
            string fileName = URIUtilities.filenameFromURINoExtension(satyamUri);

            string VideoCategory = getVideoCategoryFromFileName(fileName);

            if (VideoCategory == "")
            {
                Console.WriteLine("this video doesn't have valid category in filename");
            }

            SingleObjectLabelingAggregatedResult result = JSonUtils.ConvertJSonToObject <SingleObjectLabelingAggregatedResult>(resultString);

            return(result.Category.Equals(VideoCategory, StringComparison.InvariantCultureIgnoreCase));
        }
コード例 #3
0
        private static void ValidateSatyamKITTIObjectCountingAggregationResult(List <SatyamAggregatedResultsTableEntry> aggResultEntries,
                                                                               //bool saveImage = false,
                                                                               out double totalError,
                                                                               out double totalGroundTruth,
                                                                               int MinHeight         = TaskConstants.OBJECT_COUNTING_VALIDATION_MIN_HEIGHT,
                                                                               int MaxOcclusion      = TaskConstants.OBJECT_COUNTING_VALIDATION_MAX_OCCLUSION,
                                                                               double Max_Truncation = TaskConstants.OBJECT_COUNTING_VALIDATION_MIN_TRUNCATION)
        {
            List <double> aggResultCounts   = new List <double>();
            List <int>    GroundTruthCounts = new List <int>();
            List <double> errors            = new List <double>();

            foreach (SatyamAggregatedResultsTableEntry aggResultEntry in aggResultEntries)
            {
                SatyamSaveAggregatedDataSatyam data = new SatyamSaveAggregatedDataSatyam(aggResultEntry);
                string fileName = URIUtilities.filenameFromURINoExtension(data.SatyamURI);
                KITTIDetectionGroundTruth GroundTruthObjects = new KITTIDetectionGroundTruth(KITTIDetectionResultValidation.GroundTruthLabelDirectory + fileName + ".txt", MinHeight, MaxOcclusion, Max_Truncation);

                string jobGUID      = aggResultEntry.JobGUID;
                int    taskID       = aggResultEntry.SatyamTaskTableEntryID;
                String resultString = data.AggregatedResultString;
                ObjectCountingAggregatedResult result = JSonUtils.ConvertJSonToObject <ObjectCountingAggregatedResult>(resultString);
                int GroundtruthCount = 0;
                for (int i = 0; i < GroundTruthObjects.objects.Count; i++)
                {
                    MultiObjectLocalizationAndLabelingResultSingleEntry obj = GroundTruthObjects.objects[i];
                    //if (obj.Category == "Car" || obj.Category == "Van" || obj.Category == "DontCare")
                    if (obj.Category == "Car" || obj.Category == "Van")
                    {
                        //if (!GroundTruthObjects.BlackListed[i])
                        //{
                        GroundtruthCount++;
                        //}
                    }
                }
                aggResultCounts.Add(result.Count);
                GroundTruthCounts.Add(GroundtruthCount);
                errors.Add(Math.Abs(GroundtruthCount - result.Count));
            }
            totalError       = errors.Sum();
            totalGroundTruth = GroundTruthCounts.Sum();
            double totalErrorRatio = totalError / totalGroundTruth;

            Console.WriteLine("Error: {0} / {1} = {2}", totalError, totalGroundTruth, totalErrorRatio);
            Console.WriteLine("Total Aggregated {0}", aggResultEntries.Count);
        }
コード例 #4
0
        public static ImageSegmentationAggregatedResult_NoHoles getAggregatedResult(List <ImageSegmentationResult_NoHoles> results,
                                                                                    string SatyamURL,
                                                                                    string guid,
                                                                                    int MinResults = TaskConstants.IMAGE_SEGMENTATION_MTURK_MIN_RESULTS_TO_AGGREGATE,
                                                                                    int MaxResults = TaskConstants.IMAGE_SEGMENTATION_MTURK_MAX_RESULTS_TO_AGGREGATE,
                                                                                    double CategoryMajorityThreshold        = TaskConstants.IMAGE_SEGMENTATION_MTURK_MAJORITY_CATEGORY_THRESHOLD,
                                                                                    double PolygonBoundaryMajorityThreshold = TaskConstants.IMAGE_SEGMENTATION_MTURK_MAJORITY_POLYGON_BOUNDARY_THRESHOLD,
                                                                                    double ObjectsCoverageThreshold         = TaskConstants.IMAGE_SEGMENTATION_MTURK_OBJECT_COVERAGE_THRESHOLD_FOR_AGGREGATION_TERMINATION
                                                                                    )
        {
            if (results.Count < MinResults) //need at least three results!
            {
                return(null);
            }

            int ImageWidth  = results[0].imageWidth;
            int ImageHeight = results[0].imageHeight;

            byte[] PNG = new byte[ImageHeight * ImageWidth];


            ImageSegmentationAggregatedResult_NoHoles aggResult = new ImageSegmentationAggregatedResult_NoHoles();

            aggResult.metaData            = new ImageSegmentationAggregatedResultMetaData_NoHoles();
            aggResult.metaData.TotalCount = results.Count;

            for (int i = 0; i < PNG.Length; i++)
            {
                PNG[i] = 0;
            }

            aggResult.boxesAndCategories         = new ImageSegmentationResult_NoHoles();
            aggResult.boxesAndCategories.objects = new List <ImageSegmentationResultSingleEntry_NoHoles>();
            aggResult.boxesAndCategories.displayScaleReductionX = results[0].displayScaleReductionX;
            aggResult.boxesAndCategories.displayScaleReductionY = results[0].displayScaleReductionY;
            aggResult.boxesAndCategories.imageHeight            = ImageHeight;
            aggResult.boxesAndCategories.imageWidth             = ImageWidth;

            //first use multipartitie wieghted matching to associated the boxes disregarding the labels since
            //people might make mistake with lables but boxes are usually right
            List <List <GenericPolygon> > AllPolygons = new List <List <GenericPolygon> >();
            List <int> noPolygonsPerResult            = new List <int>();

            foreach (ImageSegmentationResult_NoHoles res in results)
            {
                AllPolygons.Add(new List <GenericPolygon>());

                if (res == null)
                {
                    noPolygonsPerResult.Add(0);
                    continue;
                }

                List <GenericPolygon> polygonList = AllPolygons[AllPolygons.Count - 1];

                foreach (ImageSegmentationResultSingleEntry_NoHoles entry in res.objects)
                {
                    polygonList.Add(entry.polygon);
                }
                noPolygonsPerResult.Add(polygonList.Count);
            }
            //now associate boxes across the various results
            List <MultipartiteWeightedMatch> polyAssociation = PolygonAssociation.computeGenericPolygonAssociations(AllPolygons);
            int noObjects            = polyAssociation.Count;
            int noAssociatedPolygons = 0;

            //how many of the drawn boxes for each result were actually associated by two or more people for each user?
            SortedDictionary <int, int> noMultipleAssociatedPolygonsPerResult = new SortedDictionary <int, int>();

            for (int i = 0; i < results.Count; i++)
            {
                noMultipleAssociatedPolygonsPerResult.Add(i, 0);
            }
            foreach (MultipartiteWeightedMatch match in polyAssociation)
            {
                if (match.elementList.Count > 1) //this has been corroborated by two people
                {
                    noAssociatedPolygons++;
                    foreach (KeyValuePair <int, int> entry in match.elementList)
                    {
                        noMultipleAssociatedPolygonsPerResult[entry.Key]++;
                    }
                }
            }

            //count how many people have a high association ratio
            int noHighAssociationRatio = 0;

            for (int i = 0; i < results.Count; i++)
            {
                if (noPolygonsPerResult[i] == 0)
                {
                    continue;
                }
                double ratio = (double)noMultipleAssociatedPolygonsPerResult[i] / (double)noPolygonsPerResult[i];
                if (ratio > ObjectsCoverageThreshold)
                {
                    noHighAssociationRatio++;
                }
            }
            if (noHighAssociationRatio < MinResults) //at least three people should have all their boxes highly corroborated by one other person
            {
                return(null);
            }

            //int noAcceptedPolygons = 0;

            for (int idx = 0; idx < polyAssociation.Count; idx++)
            {
                MultipartiteWeightedMatch match       = polyAssociation[idx];
                List <GenericPolygon>     polyList    = new List <GenericPolygon>();
                List <string>             identifiers = new List <string>();
                foreach (KeyValuePair <int, int> entry in match.elementList)
                {
                    polyList.Add(AllPolygons[entry.Key][entry.Value]);
                    identifiers.Add(entry.Key + "_" + entry.Value);
                }

                //GenericPolygon aggregatedPolygon = GetAggregatedGenericPolygon_Relaxation(polyList, ImageWidth, ImageHeight, PolygonBoundaryMajorityThreshold);
                //GenericPolygon aggregatedPolygon = GetAggregatedGenericPolygon_MajorityEdge(polyList, ImageWidth, ImageHeight, PolygonBoundaryMajorityThreshold);

                GenericPolygon aggregatedPolygon = new GenericPolygon();// dummy polygon
                byte[]         png = GetAggregatedGenericPolygon_PixelSweep(polyList, ImageWidth, ImageHeight, PolygonBoundaryMajorityThreshold);


                Dictionary <string, int> categoryNames = new Dictionary <string, int>();
                int    totalCount  = match.elementList.Count;
                int    maxCount    = 0;
                string maxCategory = "";
                foreach (KeyValuePair <int, int> entry in match.elementList)
                {
                    string category = results[entry.Key].objects[entry.Value].Category;
                    if (!categoryNames.ContainsKey(category))
                    {
                        categoryNames.Add(category, 0);
                    }
                    categoryNames[category]++;
                    if (maxCount < categoryNames[category])
                    {
                        maxCount    = categoryNames[category];
                        maxCategory = category;
                    }
                }
                double probability = ((double)maxCount + 1) / ((double)totalCount + 2);
                if (probability < CategoryMajorityThreshold && results.Count < MaxResults) //this is not a valid category need more work
                {
                    return(null);
                }


                // now we have one segment ready
                ImageSegmentationResultSingleEntry_NoHoles aggregated = new ImageSegmentationResultSingleEntry_NoHoles();
                aggregated.polygon  = aggregatedPolygon;
                aggregated.Category = maxCategory;

                aggResult.boxesAndCategories.objects.Add(aggregated);
                for (int i = 0; i < PNG.Length; i++)
                {
                    if (PNG[i] == 0 && png[i] != 0)
                    {
                        PNG[i] = (byte)(idx + 1);
                    }
                }
            }

            // save and upload to azure
            string filename = URIUtilities.filenameFromURINoExtension(SatyamURL);
            string filepath = DirectoryConstants.defaultTempDirectory + filename + "_aggregated.PNG";

            ImageUtilities.savePNGRawData(filepath, ImageWidth, ImageHeight, PNG);

            SatyamJobStorageAccountAccess blob = new SatyamJobStorageAccountAccess();
            string container     = SatyamTaskGenerator.JobTemplateToSatyamContainerNameMap[TaskConstants.Segmentation_Image_MTurk];
            string directoryPath = guid + "_aggregated";

            blob.UploadALocalFile(filepath, container, directoryPath);

            aggResult.metaData.PNG_URL = TaskConstants.AzureBlobURL + container + "/" + directoryPath + "/" + filename + "_aggregated.PNG";
            return(aggResult);
        }
コード例 #5
0
        /// <summary>
        /// Input should be a folder of videos and corresponding annotation file with the same name
        /// </summary>
        /// <param name="jobEntry"></param>
        public static bool ProcessAndUploadToAzureBlob(SatyamJobSubmissionsTableAccessEntry jobEntry)
        {
            // if the input is a folder of folders of frames, then copy directly
            SatyamJobStorageAccountAccess satyamStorage = new SatyamJobStorageAccountAccess();
            string    satyamContainerName = SatyamTaskGenerator.JobTemplateToSatyamContainerNameMap[jobEntry.JobTemplateType];
            string    GUID = jobEntry.JobGUID;
            string    satyamDirectoryName = GUID;
            SatyamJob job = JSonUtils.ConvertJSonToObject <SatyamJob>(jobEntry.JobParametersString);
            MultiObjectTrackingSubmittedJob jobParams = JSonUtils.ConvertJSonToObject <MultiObjectTrackingSubmittedJob>(job.JobParameters);

            BlobContainerManager bcm = new BlobContainerManager();
            string        status     = bcm.Connect(job.azureInformation.AzureBlobStorageConnectionString);
            List <string> FileTypes  = SatyamTaskGenerator.ValidFileTypesByTemplate[job.JobTemplateType];

            if (status != "SUCCESS")
            {
                return(false);
            }

            string guidFolder = DirectoryConstants.defaultTempDirectory + "\\" + GUID;

            Directory.CreateDirectory(guidFolder);
            int    chunkLength  = jobParams.ChunkDuration; // sec
            int    outputFPS    = jobParams.FrameRate;
            double chunkOverlap = jobParams.ChunkOverlap;  // sec

            var client = new WebClient();

            // sample to frames
            int           noFramePerChunk = (int)(chunkLength * outputFPS);
            int           noFrameOverlap  = (int)(chunkOverlap * outputFPS);
            List <string> videoUrls       = bcm.getURLList(job.azureInformation.AzureBlobStorageContainerName, job.azureInformation.AzureBlobStorageContainerDirectoryName);


            Dictionary <string, List <string> > videos = new Dictionary <string, List <string> >();

            foreach (string videolink in videoUrls)
            {
                string videoName = URIUtilities.filenameFromURINoExtension(videolink);

                if (!videos.ContainsKey(videoName))
                {
                    videos.Add(videoName, new List <string>());
                }
                videos[videoName].Add(videolink);
            }

            foreach (string videoName in videos.Keys)
            {
                // filter out those that doesn't provide a annotation file with it....
                if (videos[videoName].Count != 2)
                {
                    Console.WriteLine("Warning: Not 2 files provided for {0}.", videoName);
                    //Directory.Delete(guidFolder, true);
                    //return false;
                    continue;
                }

                string videoURL      = "";
                string annotationURL = "";
                foreach (string fileLink in videos[videoName])
                {
                    string extension = URIUtilities.fileExtensionFromURI(fileLink);
                    if (extension != "txt")
                    {
                        videoURL = fileLink;
                    }
                    else
                    {
                        annotationURL = fileLink;
                    }
                }

                string outputDirectory = guidFolder + "\\" + videoName;
                Directory.CreateDirectory(outputDirectory);

                string videoNameWithExtension = URIUtilities.filenameFromURI(videoURL);
                client.DownloadFile(videoURL, outputDirectory + "\\" + videoNameWithExtension);
                FFMpegWrappers.ExtractFrames(DirectoryConstants.ffmpeg, outputDirectory + "\\" + videoNameWithExtension, outputDirectory, videoName, DateTime.Now, outputFPS);

                File.Delete(outputDirectory + "\\" + videoNameWithExtension);


                List <string> chunkFolders = TrackingDataPreprocessor.GroupFramesIntoChunks(outputDirectory, noFramePerChunk);

                //parse VIRAT annotation file
                string annotationNameWithExtension = URIUtilities.filenameFromURI(annotationURL);
                client.DownloadFile(annotationURL, outputDirectory + "\\" + annotationNameWithExtension);

                parseAnnotationFileIntoChunkFolders(chunkFolders,
                                                    outputDirectory + "\\" + annotationNameWithExtension,
                                                    noFramePerChunk, outputFPS);

                //upload
                for (int i = 0; i < chunkFolders.Count; i++)
                {
                    string subDir = chunkFolders[i];
                    satyamStorage.uploadALocalFolder(subDir, satyamContainerName, satyamDirectoryName + "/Video_" + videoName + "_startingFrame_" + noFramePerChunk * i);
                }

                Directory.Delete(outputDirectory, true);
            }
            return(true);
        }
コード例 #6
0
        public static void AggregateWithParameter(string guid,
                                                  int MinResults = TaskConstants.TRACKLET_LABELING_MTURK_MIN_RESULTS_TO_AGGREGATE,
                                                  int MaxResults = TaskConstants.TRACKLET_LABELING_MTURK_MAX_RESULTS_TO_AGGREGATE,
                                                  double boxToleranceThreshold = TaskConstants.TRACKLET_LABELING_BOX_DEVIATION_THRESHOLD,
                                                  double ObjectCoverageApprovalThresholdPerVideo = TaskConstants.TRACKLET_LABELING_APPROVALRATIO_PER_VIDEO,
                                                  double BoxCoverageApprovalThresholdPerTrack    = TaskConstants.TRACKLET_LABELING_APPROVALRATIO_PER_TRACK,
                                                  int consensusNumber = TaskConstants.TRACKLET_LABELING_MIN_RESULTS_FOR_CONSENSUS,
                                                  double minTubeletIoUSimilarityThreshold = TaskConstants.TRACKLET_LABELING_MIN_TUBELET_SIMILARITY_THRESHOLD,
                                                  double attributeMajority      = TaskConstants.TRACKLET_LABELING_MTURK_ATTRIBUTE_MAJORITY_THRESHOLD,
                                                  bool allFalseAttributeInvalid = false
                                                  )
        {
            string configString = "Min_" + MinResults + "_Max_" + MaxResults + "_IoU_" + minTubeletIoUSimilarityThreshold + "_Ratio_" + ObjectCoverageApprovalThresholdPerVideo;

            Console.WriteLine("Aggregating for " + guid + " with param set " + configString);
            SatyamResultsTableAccess       resultsDB = new SatyamResultsTableAccess();
            List <SatyamResultsTableEntry> entries   = resultsDB.getEntriesByGUID(guid);

            resultsDB.close();

            SortedDictionary <DateTime, List <SatyamResultsTableEntry> > entriesBySubmitTime = SatyamResultValidationToolKit.SortResultsBySubmitTime_OneResultPerTurkerPerTask(entries);

            Dictionary <int, List <MultiObjectTrackingResult> > ResultsPerTask = new Dictionary <int, List <MultiObjectTrackingResult> >();
            List <int> aggregatedTasks = new List <int>();

            int noTotalConverged = 0;
            //int noCorrect = 0;
            int noTerminatedTasks = 0;

            List <SatyamAggregatedResultsTableEntry> aggEntries = new List <SatyamAggregatedResultsTableEntry>();

            Dictionary <int, int> noResultsNeededForAggregation     = SatyamResultsAnalysis.getNoResultsNeededForAggregationFromLog(configString, guid);
            Dictionary <int, int> noResultsNeededForAggregation_new = new Dictionary <int, int>();
            // play back by time
            Dictionary <int, List <string> > WorkersPerTask = new Dictionary <int, List <string> >();

            foreach (DateTime t in entriesBySubmitTime.Keys)
            {
                //Console.WriteLine("Processing Results of time: {0}", t);
                List <SatyamResultsTableEntry> ResultEntries = entriesBySubmitTime[t];
                foreach (SatyamResultsTableEntry entry in ResultEntries)
                {
                    SatyamResult satyamResult           = JSonUtils.ConvertJSonToObject <SatyamResult>(entry.ResultString);
                    SatyamTask   task                   = JSonUtils.ConvertJSonToObject <SatyamTask>(satyamResult.TaskParametersString);
                    MultiObjectTrackingSubmittedJob job = JSonUtils.ConvertJSonToObject <MultiObjectTrackingSubmittedJob>(task.jobEntry.JobParameters);
                    string fileName    = URIUtilities.filenameFromURINoExtension(task.SatyamURI);
                    int    taskEntryID = entry.SatyamTaskTableEntryID;
                    if (aggregatedTasks.Contains(taskEntryID))
                    {
                        continue;
                    }
                    if (!ResultsPerTask.ContainsKey(taskEntryID))
                    {
                        ResultsPerTask.Add(taskEntryID, new List <MultiObjectTrackingResult>());
                        WorkersPerTask.Add(taskEntryID, new List <string>());
                    }

                    // remove duplicate workers result
                    string workerID = satyamResult.amazonInfo.WorkerID;
                    if (WorkersPerTask[taskEntryID].Contains(workerID))
                    {
                        continue;
                    }
                    //enclose only non-duplicate results, one per each worker.
                    WorkersPerTask[taskEntryID].Add(workerID);



                    string   videoName        = URIUtilities.localDirectoryNameFromURI(task.SatyamURI);
                    string[] fields           = videoName.Split('_');
                    int      startingFrame    = Convert.ToInt32(fields[fields.Length - 1]);
                    int      maxChunkEndFrame = startingFrame + job.ChunkDuration * job.FrameRate;
                    int      noFrameOverlap   = (int)(job.ChunkOverlap * job.FrameRate);
                    if (startingFrame != 0)
                    {
                        startingFrame -= noFrameOverlap;
                    }



                    string blobDir = URIUtilities.localDirectoryFullPathFromURI(task.SatyamURI);
                    VATIC_DVA_CrowdsourcedResult taskr = TrackletLabelingAggregator.createVATIC_DVA_CrowdsourcedResultUsingSatyamBlobImageCount(satyamResult.TaskResult, blobDir, entry.SatyamTaskTableEntryID.ToString(), job.FrameRate);
                    //MultiObjectTrackingResult result_tmp = vatic_tmp.getCompressedTracksInTimeSegment();

                    //VATIC_DVA_CrowdsourcedResult taskr = new VATIC_DVA_CrowdsourcedResult(satyamResult.TaskResult, videoName, entry.ID.ToString(), ImageURLs.Count, job.FrameRate);
                    MultiObjectTrackingResult res = taskr.getCompressedTracksInTimeSegment();

                    if (allFalseAttributeInvalid)
                    {
                        if (TrackletLabelingAggregator.AllAttributeAllFalse(res))
                        {
                            continue;
                        }
                    }

                    ResultsPerTask[taskEntryID].Add(res);

                    // check log if enough results are collected

                    if (noResultsNeededForAggregation != null && noResultsNeededForAggregation.ContainsKey(taskEntryID) &&
                        ResultsPerTask[taskEntryID].Count < noResultsNeededForAggregation[taskEntryID])
                    {
                        continue;
                    }



                    // hack for masters
                    int tempMin = MinResults;
                    if (TaskConstants.masterGUIDs.Contains(entry.JobGUID))
                    {
                        tempMin = 1;
                    }

                    TrackletLabelingAggregatedResult aggResult = TrackletLabelingAggregator.getAggregatedResult(ResultsPerTask[taskEntryID],
                                                                                                                guid, task.SatyamURI,
                                                                                                                job.FrameRate, job.BoundaryLines,
                                                                                                                MinResults, MaxResults, boxToleranceThreshold,
                                                                                                                ObjectCoverageApprovalThresholdPerVideo,
                                                                                                                BoxCoverageApprovalThresholdPerTrack,
                                                                                                                consensusNumber, minTubeletIoUSimilarityThreshold,
                                                                                                                attributeMajority);

                    if (aggResult == null)
                    {
                        continue;
                    }

                    //////////////// aggregation happen
                    // record logs
                    if (noResultsNeededForAggregation == null || !noResultsNeededForAggregation.ContainsKey(taskEntryID))
                    {
                        noResultsNeededForAggregation_new.Add(taskEntryID, ResultsPerTask[taskEntryID].Count);
                    }



                    aggregatedTasks.Add(taskEntryID);
                    noTotalConverged++;
                    if (ResultsPerTask[taskEntryID].Count >= MaxResults)
                    {
                        noTerminatedTasks++;
                    }
                    SatyamAggregatedResult SatyamAggResult = new SatyamAggregatedResult();
                    SatyamAggResult.SatyamTaskTableEntryID = taskEntryID;
                    SatyamAggResult.AggregatedResultString = JSonUtils.ConvertObjectToJSon <TrackletLabelingAggregatedResult>(aggResult);
                    SatyamAggResult.TaskParameters         = JSonUtils.ConvertJSonToObject <SatyamResult>(entry.ResultString).TaskParametersString;

                    SatyamAggregatedResultsTableEntry aggEntry = new SatyamAggregatedResultsTableEntry();
                    aggEntry.SatyamTaskTableEntryID = taskEntryID;
                    aggEntry.JobGUID      = entry.JobGUID;
                    aggEntry.ResultString = JSonUtils.ConvertObjectToJSon <SatyamAggregatedResult>(SatyamAggResult);


                    aggEntries.Add(aggEntry);
                }
            }


            Console.WriteLine("Total_Aggregated_Tasks: {0}", noTotalConverged);
            Console.WriteLine("Total_Terminated_Tasks: {0}", noTerminatedTasks);

            SatyamResultsAnalysis.RecordAggregationLog(noResultsNeededForAggregation_new, configString, guid);

            TrackletLabelingAnalyzer.GroupEntriesByVideoNameAndStitchAndSaveAggregatedResultVideosLocally(aggEntries, DirectoryConstants.defaultTempDirectory + guid);
        }
コード例 #7
0
        public static void SaveAggregatedResultVideosLocally(List <SatyamAggregatedResultsTableEntry> entries, string directoryName)
        {
            directoryName = directoryName + "\\Aggregated";

            if (!Directory.Exists(directoryName))
            {
                Directory.CreateDirectory(directoryName);
            }
            SatyamJobStorageAccountAccess satyamStorage = new SatyamJobStorageAccountAccess();

            for (int i = 0; i < entries.Count; i++)
            {
                SatyamAggregatedResultsTableEntry entry           = entries[i];
                SatyamAggregatedResult            satyamAggResult = JSonUtils.ConvertJSonToObject <SatyamAggregatedResult>(entry.ResultString);
                SatyamTask aggTask = JSonUtils.ConvertJSonToObject <SatyamTask>(satyamAggResult.TaskParameters);
                MultiObjectTrackingSubmittedJob  job       = JSonUtils.ConvertJSonToObject <MultiObjectTrackingSubmittedJob>(aggTask.jobEntry.JobParameters);
                TrackletLabelingAggregatedResult aggresult = JSonUtils.ConvertJSonToObject <TrackletLabelingAggregatedResult>(satyamAggResult.AggregatedResultString);

                WebClient    wb             = new WebClient();
                Stream       aggTrackStream = wb.OpenRead(aggresult.AggregatedTrackletsString_URL);
                StreamReader reader         = new StreamReader(aggTrackStream);
                String       aggTrackString = reader.ReadToEnd();

                MultiObjectTrackingResult aggTracks = JSonUtils.ConvertJSonToObject <MultiObjectTrackingResult>(aggTrackString);

                string        blobDir   = URIUtilities.localDirectoryFullPathFromURI(aggTask.SatyamURI);
                List <string> ImageURLs = satyamStorage.getURLListOfSpecificExtensionUnderSubDirectoryByURI(blobDir, new List <string>()
                {
                    "jpg", "png"
                });


                string videoName = URIUtilities.localDirectoryNameFromURI(blobDir) + "_" + URIUtilities.filenameFromURINoExtension(aggTask.SatyamURI) + "_" + entry.ID;

                MultiObjectTrackingAnalyzer.generateVideoForEvaluation(ImageURLs, aggTracks, directoryName, videoName, job.FrameRate);
            }
        }
コード例 #8
0
        public static void SaveResultVideosLocally(List <SatyamResultsTableEntry> entries, string directoryName, int fps = 10)
        {
            directoryName = directoryName + "\\Raw";

            if (!Directory.Exists(directoryName))
            {
                Directory.CreateDirectory(directoryName);
            }

            SatyamJobStorageAccountAccess satyamStorage = new SatyamJobStorageAccountAccess();



            for (int i = 0; i < entries.Count; i++)
            {
                SatyamResultsTableEntry entry        = entries[i];
                SatyamResult            satyamResult = JSonUtils.ConvertJSonToObject <SatyamResult>(entry.ResultString);
                SatyamTask task = JSonUtils.ConvertJSonToObject <SatyamTask>(satyamResult.TaskParametersString);
                MultiObjectTrackingSubmittedJob job = JSonUtils.ConvertJSonToObject <MultiObjectTrackingSubmittedJob>(task.jobEntry.JobParameters);

                string blobDir = URIUtilities.localDirectoryFullPathFromURI(task.SatyamURI);

                //VATIC_DVA_CrowdsourcedResult taskr = new VATIC_DVA_CrowdsourcedResult(satyamResult.TaskResult, task.SatyamURI, start, end, task.SatyamJobSubmissionsTableEntryID.ToString());
                VATIC_DVA_CrowdsourcedResult taskr = MultiObjectTrackingAggregator.createVATIC_DVA_CrowdsourcedResultUsingSatyamBlobImageCount(satyamResult.TaskResult, blobDir, entry.ID.ToString(), job.FrameRate);
                MultiObjectTrackingResult    res   = taskr.getCompressedTracksInTimeSegment();

                List <string> ImageURLs = satyamStorage.getURLListOfSpecificExtensionUnderSubDirectoryByURI(blobDir, new List <string>()
                {
                    "jpg", "png"
                });
                string videoName = URIUtilities.localDirectoryNameFromURI(blobDir) + "_" + URIUtilities.filenameFromURINoExtension(task.SatyamURI) + "_" + entry.ID;

                MultiObjectTrackingAnalyzer.generateVideoForEvaluation(ImageURLs, res, directoryName, videoName, job.FrameRate);
            }
        }
コード例 #9
0
        public static MultiObjectTrackingResult stitchAllChunksAllObjectsOfOneVideo(List <SatyamAggregatedResultsTableEntry> entries, out List <string> ImageURLs, out int fps)
        {
            ImageURLs = new List <string>();
            fps       = 0;
            if (entries.Count == 0)
            {
                return(null);
            }

            SatyamJobStorageAccountAccess satyamStorage = new SatyamJobStorageAccountAccess();
            MultiObjectTrackingResult     stitched      = new MultiObjectTrackingResult();

            int totalFrameCounts = 0;

            // ensure the order is correct
            SortedDictionary <int, List <SatyamAggregatedResultsTableEntry> > sortedEntries = new SortedDictionary <int, List <SatyamAggregatedResultsTableEntry> >();
            List <int> idx = new List <int>();

            for (int i = 0; i < entries.Count; i++)
            {
                SatyamAggregatedResultsTableEntry entry           = entries[i];
                SatyamAggregatedResult            satyamAggResult = JSonUtils.ConvertJSonToObject <SatyamAggregatedResult>(entry.ResultString);
                SatyamTask aggTask = JSonUtils.ConvertJSonToObject <SatyamTask>(satyamAggResult.TaskParameters);
                string     video   = URIUtilities.localDirectoryNameFromURI(aggTask.SatyamURI);
                string[]   fields  = video.Split('_');

                int startingFrame = Convert.ToInt32(fields[fields.Length - 1]);
                if (!sortedEntries.ContainsKey(startingFrame))
                {
                    sortedEntries.Add(startingFrame, new List <SatyamAggregatedResultsTableEntry>());
                    idx.Add(startingFrame);
                }
                sortedEntries[startingFrame].Add(entries[i]);
            }


            idx.Sort();


            List <string> AggObjIds = new List <string>();

            for (int i = 0; i < idx.Count; i++)
            {
                int    noFramesOverlap = 0;
                string blobDir         = "";
                // grouping all objects that belong to the same chunk
                MultiObjectTrackingResult aggTracksOfAllObjectsPerChunk = new MultiObjectTrackingResult();

                List <string> objIds = new List <string>();
                for (int j = 0; j < sortedEntries[idx[i]].Count; j++)
                {
                    SatyamAggregatedResultsTableEntry entry           = sortedEntries[idx[i]][j];
                    SatyamAggregatedResult            satyamAggResult = JSonUtils.ConvertJSonToObject <SatyamAggregatedResult>(entry.ResultString);
                    SatyamTask aggTask = JSonUtils.ConvertJSonToObject <SatyamTask>(satyamAggResult.TaskParameters);
                    MultiObjectTrackingSubmittedJob job = JSonUtils.ConvertJSonToObject <MultiObjectTrackingSubmittedJob>(aggTask.jobEntry.JobParameters);
                    if (job.ChunkOverlap != 0.0)
                    {
                        noFramesOverlap = (int)(job.ChunkOverlap * job.FrameRate);
                    }
                    fps     = job.FrameRate;
                    blobDir = URIUtilities.localDirectoryFullPathFromURI(aggTask.SatyamURI);

                    string objId = URIUtilities.filenameFromURINoExtension(aggTask.SatyamURI);
                    objIds.Add(objId);

                    TrackletLabelingAggregatedResult aggresult = JSonUtils.ConvertJSonToObject <TrackletLabelingAggregatedResult>(satyamAggResult.AggregatedResultString);

                    WebClient    wb             = new WebClient();
                    Stream       aggTrackStream = wb.OpenRead(aggresult.AggregatedTrackletsString_URL);
                    StreamReader reader         = new StreamReader(aggTrackStream);
                    String       aggTrackString = reader.ReadToEnd();

                    MultiObjectTrackingResult aggTracks = JSonUtils.ConvertJSonToObject <MultiObjectTrackingResult>(aggTrackString);
                    if (aggTracksOfAllObjectsPerChunk.tracks.Count == 0)
                    {
                        aggTracksOfAllObjectsPerChunk = aggTracks;
                    }
                    else
                    {
                        for (int k = 0; k < aggTracks.tracks.Count; k++)
                        {
                            aggTracksOfAllObjectsPerChunk.tracks.Add(aggTracks.tracks[k]);
                        }
                    }
                }

                List <string> TraceURLs = satyamStorage.getURLListOfSpecificExtensionUnderSubDirectoryByURI(blobDir, new List <string>()
                {
                    "jpg", "png"
                });

                if (i == 0)
                {
                    ImageURLs.AddRange(TraceURLs);

                    stitched          = aggTracksOfAllObjectsPerChunk;
                    totalFrameCounts += TraceURLs.Count;
                    AggObjIds         = objIds;
                }
                else
                {
                    int noNewFrames = 0;
                    for (int j = noFramesOverlap; j < TraceURLs.Count; j++)
                    {
                        ImageURLs.Add(TraceURLs[j]);
                        noNewFrames++;
                    }

                    //stitched = MultiObjectTrackingAnalyzer.stitchTwoTracesByTubeletsOfOverlappingVideoChunk(stitched,
                    //    aggTracksOfAllObjectsPerChunk, totalFrameCounts, totalFrameCounts + noNewFrames, noFramesOverlap, fps);

                    // postpone the agg trace
                    double frameTimeInMiliSeconds       = (double)1000 / (double)fps;
                    double timeToPostponeInMilliSeconds = (double)(totalFrameCounts - noFramesOverlap) * frameTimeInMiliSeconds;
                    //TimeSpan timeSpanToPostponeInSeconds = new TimeSpan(0,0,0,0, (int)timeToPostponeInMilliSeconds);
                    TimeSpan timeSpanToPostponeInSeconds = DateTimeUtilities.getTimeSpanFromTotalMilliSeconds((int)timeToPostponeInMilliSeconds);
                    aggTracksOfAllObjectsPerChunk.postpone(timeSpanToPostponeInSeconds);

                    // overlap must be 0
                    for (int k = 0; k < aggTracksOfAllObjectsPerChunk.tracks.Count; k++)
                    {
                        if (!AggObjIds.Contains(objIds[k]))
                        {
                            stitched.tracks.Add(aggTracksOfAllObjectsPerChunk.tracks[k]);
                            AggObjIds.Add(objIds[k]);
                        }
                        else
                        {
                            // stitch the track for the same id
                            int tckIdx = AggObjIds.IndexOf(objIds[k]);
                            stitched.tracks[tckIdx] = CompressedTrack.stitchTwoAdjacentTrack(stitched.tracks[tckIdx], aggTracksOfAllObjectsPerChunk.tracks[k]);
                        }
                    }



                    totalFrameCounts += noNewFrames;
                }

                //debug
                //generateVideoForEvaluation(ImageURLs, stitched, directoryName + "_" + i, videoName, fps);
            }
            return(stitched);
        }
コード例 #10
0
        public static void SaveResultImagesLocally(List <SatyamResultsTableEntry> entries, string directoryName)
        {
            if (!Directory.Exists(directoryName))
            {
                Directory.CreateDirectory(directoryName);
            }

            directoryName = directoryName + "\\Raw";

            if (!Directory.Exists(directoryName))
            {
                Directory.CreateDirectory(directoryName);
            }

            // sort by task id
            SortedDictionary <int, List <SatyamResultsTableEntry> > taskResults = new SortedDictionary <int, List <SatyamResultsTableEntry> >();

            for (int i = 0; i < entries.Count; i++)
            {
                if (!taskResults.ContainsKey(entries[i].SatyamTaskTableEntryID))
                {
                    taskResults.Add(entries[i].SatyamTaskTableEntryID, new List <SatyamResultsTableEntry>());
                }
                taskResults[entries[i].SatyamTaskTableEntryID].Add(entries[i]);
            }

            foreach (int taskID in taskResults.Keys)
            {
                for (int i = 0; i < taskResults[taskID].Count; i++)
                {
                    SatyamResultsTableEntry entry        = taskResults[taskID][i];
                    SatyamResult            satyamResult = JSonUtils.ConvertJSonToObject <SatyamResult>(entry.ResultString);
                    SatyamTask task             = JSonUtils.ConvertJSonToObject <SatyamTask>(satyamResult.TaskParametersString);
                    SatyamJob  job              = task.jobEntry;
                    ImageSegmentationResult res = JSonUtils.ConvertJSonToObject <ImageSegmentationResult>(satyamResult.TaskResult);
                    if (res == null)
                    {
                        continue;
                    }

                    string fileName = URIUtilities.filenameFromURINoExtension(task.SatyamURI);



                    fileName = fileName + "-Result";
                    if (satyamResult.amazonInfo.AssignmentID != "")
                    {
                        fileName = fileName + "-" + satyamResult.amazonInfo.AssignmentID;
                    }
                    fileName += "-" + entry.ID;


                    if (File.Exists(directoryName + "\\" + fileName + ".jpg"))
                    {
                        continue;
                    }

                    Console.WriteLine("Saving Turker Result {0}", fileName);

                    Image originalImage = ImageUtilities.getImageFromURI(task.SatyamURI);

                    Image ResultImage = DrawResultsOnImage(res, originalImage);

                    byte[] png = ImageSegmentationResult.PolygonResult2Bitmap(res);

                    if (ResultImage == null)
                    {
                        continue;
                    }

                    ImageUtilities.saveImage(ResultImage, directoryName, fileName);

                    ImageUtilities.savePNGRawData(directoryName + "\\" + fileName + "_bitmap.jpg", originalImage.Width, originalImage.Height, png);
                }
            }
        }
コード例 #11
0
        public static bool ProcessAndUploadToAzureBlob(SatyamJobSubmissionsTableAccessEntry jobEntry)
        {
            // if the input is a folder of folders of frames, then copy directly
            SatyamJobStorageAccountAccess satyamStorage = new SatyamJobStorageAccountAccess();
            string    satyamContainerName = SatyamTaskGenerator.JobTemplateToSatyamContainerNameMap[jobEntry.JobTemplateType];
            string    GUID = jobEntry.JobGUID;
            string    satyamDirectoryName = GUID;
            SatyamJob job = JSonUtils.ConvertJSonToObject <SatyamJob>(jobEntry.JobParametersString);
            MultiObjectTrackingSubmittedJob jobParams = JSonUtils.ConvertJSonToObject <MultiObjectTrackingSubmittedJob>(job.JobParameters);

            BlobContainerManager bcm = new BlobContainerManager();
            string        status     = bcm.Connect(job.azureInformation.AzureBlobStorageConnectionString);
            List <string> FileTypes  = SatyamTaskGenerator.ValidFileTypesByTemplate[job.JobTemplateType];

            if (status != "SUCCESS")
            {
                return(false);
            }

            string guidFolder = DirectoryConstants.defaultTempDirectory + "\\" + GUID;

            Directory.CreateDirectory(guidFolder);
            int    chunkLength  = jobParams.ChunkDuration; // sec
            int    outputFPS    = jobParams.FrameRate;
            double chunkOverlap = jobParams.ChunkOverlap;  // sec

            var client = new WebClient();

            if (jobParams.DataSrcFormat == DataFormat.Video)
            {
                // sample to frames
                int           noFramePerChunk = (int)(chunkLength * outputFPS);
                int           noFrameOverlap  = (int)(chunkOverlap * outputFPS);
                List <string> videoUrls       = bcm.getURLList(job.azureInformation.AzureBlobStorageContainerName, job.azureInformation.AzureBlobStorageContainerDirectoryName);
                foreach (string video in videoUrls)
                {
                    string videoName          = URIUtilities.filenameFromURINoExtension(video);
                    string videonameExtension = URIUtilities.filenameFromURI(video);
                    string outputDirectory    = guidFolder + "\\" + videoName;
                    Directory.CreateDirectory(outputDirectory);
                    client.DownloadFile(video, outputDirectory + "\\" + videonameExtension);
                    FFMpegWrappers.ExtractFrames(DirectoryConstants.ffmpeg, outputDirectory + "\\" + videonameExtension, outputDirectory, videoName, DateTime.Now, outputFPS);
                    Console.WriteLine("deleting downloaded file...");
                    File.Delete(outputDirectory + "\\" + videonameExtension);
                    GroupFramesIntoChunksAndUploadChunks(videoName, outputDirectory, noFramePerChunk, noFrameOverlap, satyamContainerName, satyamDirectoryName);
                    Directory.Delete(outputDirectory, true);
                }
            }

            if (jobParams.DataSrcFormat == DataFormat.VideoFrame)
            {
                int noFramePerChunk = (int)(chunkLength * outputFPS);//just use one fps for now, assume input should've already downsampled
                int noFrameOverlap  = (int)(chunkOverlap * outputFPS);
                // chunk according to parameters
                List <string> frameUrls = bcm.getURLList(job.azureInformation.AzureBlobStorageContainerName, job.azureInformation.AzureBlobStorageContainerDirectoryName);
                Dictionary <string, List <string> > framesPerVideo = new Dictionary <string, List <string> >();
                foreach (string url in frameUrls)
                {
                    // assumed hierarchy: blob/directory.../videoname/frameid.jpg
                    //string frameName = URIUtilities.filenameFromURINoExtension(url);
                    string[] urlparts  = url.Split('/');
                    string   videoName = urlparts[urlparts.Length - 2];
                    if (!framesPerVideo.ContainsKey(videoName))
                    {
                        framesPerVideo.Add(videoName, new List <string>());
                    }
                    framesPerVideo[videoName].Add(url);
                }

                foreach (string video in framesPerVideo.Keys)
                {
                    string outputDirectory = guidFolder + "\\" + video;
                    Directory.CreateDirectory(outputDirectory);
                    foreach (string frameURL in framesPerVideo[video])
                    {
                        string frameName = URIUtilities.filenameFromURI(frameURL);
                        client.DownloadFile(frameURL, outputDirectory + "\\" + frameName);
                    }
                    GroupFramesIntoChunksAndUploadChunks(video, outputDirectory, noFramePerChunk, noFrameOverlap, satyamContainerName, satyamDirectoryName);
                    Directory.Delete(outputDirectory, true);
                }
            }
            return(true);
        }
コード例 #12
0
        public static ImageSegmentationAggregatedResult getAggregatedResult(List <ImageSegmentationResult> originalResults,
                                                                            string SatyamURL,
                                                                            string guid,
                                                                            int MinResults = TaskConstants.IMAGE_SEGMENTATION_MTURK_MIN_RESULTS_TO_AGGREGATE,
                                                                            int MaxResults = TaskConstants.IMAGE_SEGMENTATION_MTURK_MAX_RESULTS_TO_AGGREGATE,
                                                                            double CategoryMajorityThreshold        = TaskConstants.IMAGE_SEGMENTATION_MTURK_MAJORITY_CATEGORY_THRESHOLD,
                                                                            double PolygonBoundaryMajorityThreshold = TaskConstants.IMAGE_SEGMENTATION_MTURK_MAJORITY_POLYGON_BOUNDARY_THRESHOLD,
                                                                            double ObjectsCoverageThreshold         = TaskConstants.IMAGE_SEGMENTATION_MTURK_OBJECT_COVERAGE_THRESHOLD_FOR_AGGREGATION_TERMINATION,
                                                                            double minSimilarityThreshold           = TaskConstants.IMAGE_SEGMENTATION_MTURK_POLYGON_IOU_THRESHOLD,
                                                                            int minResultsForConsensus = TaskConstants.IMAGE_SEGMENTATION_MTURK_MIN_RESULTS_FOR_CONSENSUS
                                                                            )
        {
            List <ImageSegmentationResult> results = new List <ImageSegmentationResult>();

            // Warning: filter empty results: strong assumption that there has to be something for now!!!
            for (int i = 0; i < originalResults.Count; i++)
            {
                if (originalResults[i] != null && originalResults[i].objects.Count != 0)
                {
                    results.Add(originalResults[i]);
                }
            }

            Console.WriteLine("Filetered Results: {0}", results.Count);

            if (results.Count < MinResults) //need at least three results!
            {
                return(null);
            }

            int ImageWidth  = results[0].imageWidth;
            int ImageHeight = results[0].imageHeight;

            //auto padding data to make the stride a multiple of 4. required by bmpdata for output
            int paddedWidth = ImageWidth;

            if (paddedWidth % 4 != 0)
            {
                paddedWidth = (paddedWidth / 4 + 1) * 4;
            }
            byte[] PNG = new byte[ImageHeight * paddedWidth];


            ImageSegmentationAggregatedResult aggResult = new ImageSegmentationAggregatedResult();

            aggResult.metaData            = new ImageSegmentationAggregatedResultMetaData();
            aggResult.metaData.TotalCount = results.Count;

            for (int i = 0; i < PNG.Length; i++)
            {
                PNG[i] = 0;
            }

            aggResult.boxesAndCategories         = new ImageSegmentationResult();
            aggResult.boxesAndCategories.objects = new List <ImageSegmentationResultSingleEntry>();
            aggResult.boxesAndCategories.displayScaleReductionX = results[0].displayScaleReductionX;
            aggResult.boxesAndCategories.displayScaleReductionY = results[0].displayScaleReductionY;
            aggResult.boxesAndCategories.imageHeight            = ImageHeight;
            aggResult.boxesAndCategories.imageWidth             = ImageWidth;

            //first use multipartitie wieghted matching to associated the boxes disregarding the labels since
            //people might make mistake with lables but boxes are usually right
            List <List <Segment> > AllPolygons         = new List <List <Segment> >();
            List <int>             noPolygonsPerResult = new List <int>();

            foreach (ImageSegmentationResult res in results)
            {
                AllPolygons.Add(new List <Segment>());

                if (res == null)
                {
                    noPolygonsPerResult.Add(0);
                    continue;
                }

                List <Segment> polygonList = AllPolygons[AllPolygons.Count - 1];

                foreach (ImageSegmentationResultSingleEntry entry in res.objects)
                {
                    polygonList.Add(entry.segment);
                }
                noPolygonsPerResult.Add(polygonList.Count);
            }
            //now associate boxes across the various results
            //List<MultipartiteWeightedMatch> polyAssociation = PolygonAssociation.computeGenericPolygonAssociations(AllPolygons);

            List <MultipartiteWeightedMatch> polyAssociation = GenericObjectAssociation.computeAssociations <Segment>(AllPolygons, Segment.computeIoU_PixelSweep);

            int noObjects            = polyAssociation.Count;
            int noAssociatedPolygons = 0;

            //how many of the drawn boxes for each result were actually associated by two or more people for each user?
            SortedDictionary <int, int> noMultipleAssociatedPolygonsPerResult = new SortedDictionary <int, int>();

            for (int i = 0; i < results.Count; i++)
            {
                noMultipleAssociatedPolygonsPerResult.Add(i, 0);
            }
            foreach (MultipartiteWeightedMatch match in polyAssociation)
            {
                if (match.elementList.Count > 1) //this has been corroborated by two people
                {
                    noAssociatedPolygons++;
                    foreach (KeyValuePair <int, int> entry in match.elementList)
                    {
                        noMultipleAssociatedPolygonsPerResult[entry.Key]++;
                    }
                }
            }

            //count how many people have a high association ratio
            int noHighAssociationRatio = 0;

            for (int i = 0; i < results.Count; i++)
            {
                if (noPolygonsPerResult[i] == 0)
                {
                    continue;
                }
                double ratio = (double)noMultipleAssociatedPolygonsPerResult[i] / (double)noPolygonsPerResult[i];
                if (ratio > ObjectsCoverageThreshold)
                {
                    noHighAssociationRatio++;
                }
            }
            if (noHighAssociationRatio < MinResults && results.Count < MaxResults) //at least three people should have all their boxes highly corroborated by one other person
            {
                return(null);
            }

            //int noAcceptedPolygons = 0;

            SortedDictionary <int, List <int> > noHighQualityAssociation = new SortedDictionary <int, List <int> >();

            for (int idx = 0; idx < polyAssociation.Count; idx++)
            {
                MultipartiteWeightedMatch match       = polyAssociation[idx];
                List <Segment>            polyList    = new List <Segment>();
                List <string>             identifiers = new List <string>();
                foreach (KeyValuePair <int, int> entry in match.elementList)
                {
                    polyList.Add(AllPolygons[entry.Key][entry.Value]);
                    identifiers.Add(entry.Key + "_" + entry.Value);
                }

                SegmentGroup majorityGroup = getMajorityGroupPolygons(identifiers, polyList, minSimilarityThreshold, match.weightMatrix);

                if (majorityGroup == null)
                {
                    continue;
                }

                if (majorityGroup.segments.Count < minResultsForConsensus)
                {
                    continue;
                }
                Segment aggregatedPolygon = new Segment();// dummy polygon
                byte[]  png = GetAggregatedGenericPolygon_PixelSweep(majorityGroup.segments, ImageWidth, ImageHeight, PolygonBoundaryMajorityThreshold);


                // log where the results come from
                foreach (string id in majorityGroup.identifiers)
                {
                    string[] fields = id.Split('_');
                    int      k      = Convert.ToInt32(fields[0]);
                    int      v      = Convert.ToInt32(fields[1]);
                    if (!noHighQualityAssociation.ContainsKey(k))
                    {
                        noHighQualityAssociation.Add(k, new List <int>());
                    }
                    noHighQualityAssociation[k].Add(v);
                }


                // category aggregation
                Dictionary <string, int> categoryNames = new Dictionary <string, int>();
                int    totalCount  = match.elementList.Count;
                int    maxCount    = 0;
                string maxCategory = "";
                foreach (KeyValuePair <int, int> entry in match.elementList)
                {
                    string category = results[entry.Key].objects[entry.Value].Category;
                    if (!categoryNames.ContainsKey(category))
                    {
                        categoryNames.Add(category, 0);
                    }
                    categoryNames[category]++;
                    if (maxCount < categoryNames[category])
                    {
                        maxCount    = categoryNames[category];
                        maxCategory = category;
                    }
                }
                double probability = ((double)maxCount + 1) / ((double)totalCount + 2);
                if (probability < CategoryMajorityThreshold && results.Count < MaxResults) //this is not a valid category need more work
                {
                    return(null);
                }


                // now we have one segment ready
                ImageSegmentationResultSingleEntry aggregated = new ImageSegmentationResultSingleEntry();
                aggregated.segment  = aggregatedPolygon;
                aggregated.Category = maxCategory;

                aggResult.boxesAndCategories.objects.Add(aggregated);
                for (int i = 0; i < ImageWidth; i++)
                {
                    for (int j = 0; j < ImageHeight; j++)
                    {
                        int pospng = j * ImageWidth + i;
                        int pos    = j * paddedWidth + i;
                        if (PNG[pos] == 0 && png[pospng] != 0)
                        {
                            PNG[pos] = (byte)(idx + 1);
                        }
                    }
                }
            }


            // check no. of high association results
            int noResultsWithHighQualityObjectCoverage = 0;

            for (int i = 0; i < results.Count; i++)
            {
                if (noPolygonsPerResult[i] == 0)
                {
                    continue;
                }
                if (!noHighQualityAssociation.ContainsKey(i))
                {
                    continue;
                }
                double ratio = ((double)noHighQualityAssociation[i].Count) / (double)noPolygonsPerResult[i];
                if (ratio > ObjectsCoverageThreshold)
                {
                    noResultsWithHighQualityObjectCoverage++;
                }
            }
            if (noResultsWithHighQualityObjectCoverage < MinResults && results.Count < MaxResults) //at least three people should have most of their boxes highly corroborated by one other person
            {
                return(null);
            }

            // save and upload to azure
            string filename = URIUtilities.filenameFromURINoExtension(SatyamURL);
            //string filepath = DirectoryConstants.defaultTempDirectory + filename + "_aggregated.PNG";
            string filepath = DirectoryConstants.defaultAzureTempDirectory + filename + "_aggregated.PNG";

            ImageUtilities.savePNGRawData(filepath, ImageWidth, ImageHeight, PNG);

            SatyamJobStorageAccountAccess blob = new SatyamJobStorageAccountAccess();
            string container     = SatyamTaskGenerator.JobTemplateToSatyamContainerNameMap[TaskConstants.Segmentation_Image_MTurk];
            string directoryPath = guid + "_aggregated";

            blob.UploadALocalFile(filepath, container, directoryPath);

            aggResult.metaData.PNG_URL = TaskConstants.AzureBlobURL + container + "/" + directoryPath + "/" + filename + "_aggregated.PNG";

            //clean up
            File.Delete(filepath);
            return(aggResult);
        }
コード例 #13
0
        /// <summary>
        /// function generalizable.. TODO... to all tasks
        /// </summary>
        /// <param name="guids"></param>
        /// <param name="IoUTreshold"></param>
        /// <param name="saveImage"></param>
        /// <param name="outputDirectory"></param>
        /// <param name="MinResults"></param>
        /// <param name="MaxResults"></param>
        /// <param name="CategoryMajorityThreshold"></param>
        /// <param name="PolygonBoundaryMajorityThreshold"></param>
        /// <param name="ObjectsCoverageThreshold"></param>
        /// <param name="overwrite"></param>
        /// <param name="approvalAnalysis"></param>
        public static void AggregateWithParameterAndValidatePascalVOCImageSegmentationByGUID(List <string> guids,
                                                                                             double IoUTreshold,
                                                                                             bool saveImage = false, string outputDirectory = null,
                                                                                             int MinResults = TaskConstants.IMAGE_SEGMENTATION_MTURK_MIN_RESULTS_TO_AGGREGATE,
                                                                                             int MaxResults = TaskConstants.IMAGE_SEGMENTATION_MTURK_MAX_RESULTS_TO_AGGREGATE,
                                                                                             double CategoryMajorityThreshold        = TaskConstants.IMAGE_SEGMENTATION_MTURK_MAJORITY_CATEGORY_THRESHOLD,
                                                                                             double PolygonBoundaryMajorityThreshold = TaskConstants.IMAGE_SEGMENTATION_MTURK_MAJORITY_POLYGON_BOUNDARY_THRESHOLD,
                                                                                             double ObjectsCoverageThreshold         = TaskConstants.IMAGE_SEGMENTATION_MTURK_OBJECT_COVERAGE_THRESHOLD_FOR_AGGREGATION_TERMINATION,
                                                                                             double minSimilarityThreshold           = TaskConstants.IMAGE_SEGMENTATION_MTURK_POLYGON_IOU_THRESHOLD,
                                                                                             int minResultsForConsensus = TaskConstants.IMAGE_SEGMENTATION_MTURK_MIN_RESULTS_FOR_CONSENSUS,
                                                                                             bool overwrite             = false,
                                                                                             bool approvalAnalysis      = false)
        {
            string configString = "Min_" + MinResults + "_Max_" + MaxResults + "_Majority_" + PolygonBoundaryMajorityThreshold + "_Ratio_" + ObjectsCoverageThreshold;

            Console.WriteLine("Aggregating for param set " + configString);
            if (!overwrite && File.Exists(DirectoryConstants.defaultTempDirectory + "\\ImageSegmentationResult\\" + configString + ".txt"))
            {
                return;
            }

            SatyamResultsTableAccess resultsDB = new SatyamResultsTableAccess();

            Dictionary <int, List <string> > WorkersPerTask = new Dictionary <int, List <string> >();

            List <SatyamResultsTableEntry> entries = new List <SatyamResultsTableEntry>();

            foreach (string guid in guids)
            {
                entries.AddRange(resultsDB.getEntriesByGUIDOrderByID(guid));
            }
            resultsDB.close();

            SortedDictionary <DateTime, List <SatyamResultsTableEntry> > entriesBySubmitTime =
                SatyamResultValidationToolKit.SortResultsBySubmitTime_OneResultPerTurkerPerTask(entries);

            Dictionary <int, List <ImageSegmentationResult> > ResultsPerTask = new Dictionary <int, List <ImageSegmentationResult> >();
            List <int> aggregatedTasks = new List <int>();

            int noTotalConverged = 0;
            //int noCorrect = 0;
            int noTerminatedTasks = 0;

            List <SatyamAggregatedResultsTableEntry> aggEntries     = new List <SatyamAggregatedResultsTableEntry>();
            Dictionary <int, int> noResultsNeededForAggregation     = SatyamResultsAnalysis.getNoResultsNeededForAggregationFromLog(configString, guids[0]);
            Dictionary <int, int> noResultsNeededForAggregation_new = new Dictionary <int, int>();

            // play back by time
            foreach (DateTime t in entriesBySubmitTime.Keys)
            {
                //Console.WriteLine("Processing Results of time: {0}", t);
                List <SatyamResultsTableEntry> ResultEntries = entriesBySubmitTime[t];
                foreach (SatyamResultsTableEntry entry in ResultEntries)
                {
                    SatyamResult satyamResult = JSonUtils.ConvertJSonToObject <SatyamResult>(entry.ResultString);
                    SatyamTask   task         = JSonUtils.ConvertJSonToObject <SatyamTask>(satyamResult.TaskParametersString);
                    SatyamJob    job          = task.jobEntry;
                    string       fileName     = URIUtilities.filenameFromURINoExtension(task.SatyamURI);
                    int          taskEntryID  = entry.SatyamTaskTableEntryID;
                    if (aggregatedTasks.Contains(taskEntryID))
                    {
                        continue;
                    }
                    if (!ResultsPerTask.ContainsKey(taskEntryID))
                    {
                        ResultsPerTask.Add(taskEntryID, new List <ImageSegmentationResult>());
                    }

                    ResultsPerTask[taskEntryID].Add(JSonUtils.ConvertJSonToObject <ImageSegmentationResult>(satyamResult.TaskResult));

                    // check log if enough results are collected
                    if (noResultsNeededForAggregation != null && noResultsNeededForAggregation.ContainsKey(taskEntryID) &&
                        ResultsPerTask[taskEntryID].Count < noResultsNeededForAggregation[taskEntryID])
                    {
                        continue;
                    }

                    ImageSegmentationAggregatedResult aggResult = ImageSegmentationAggregator.getAggregatedResult(
                        ResultsPerTask[taskEntryID], task.SatyamURI, entry.JobGUID,
                        MinResults, MaxResults, CategoryMajorityThreshold,
                        PolygonBoundaryMajorityThreshold, ObjectsCoverageThreshold,
                        minSimilarityThreshold, minResultsForConsensus);
                    if (aggResult == null)
                    {
                        continue;
                    }

                    // aggregation happen
                    // record logs
                    if (noResultsNeededForAggregation == null || !noResultsNeededForAggregation.ContainsKey(taskEntryID))
                    {
                        noResultsNeededForAggregation_new.Add(taskEntryID, ResultsPerTask[taskEntryID].Count);
                    }
                    aggregatedTasks.Add(taskEntryID);
                    noTotalConverged++;
                    if (ResultsPerTask[taskEntryID].Count >= MaxResults)
                    {
                        noTerminatedTasks++;
                    }
                    SatyamAggregatedResult SatyamAggResult = new SatyamAggregatedResult();
                    SatyamAggResult.SatyamTaskTableEntryID = taskEntryID;
                    SatyamAggResult.AggregatedResultString = JSonUtils.ConvertObjectToJSon <ImageSegmentationAggregatedResult>(aggResult);
                    SatyamAggResult.TaskParameters         = JSonUtils.ConvertJSonToObject <SatyamResult>(entry.ResultString).TaskParametersString;

                    SatyamAggregatedResultsTableEntry aggEntry = new SatyamAggregatedResultsTableEntry();
                    aggEntry.SatyamTaskTableEntryID = taskEntryID;
                    aggEntry.JobGUID      = entry.JobGUID;
                    aggEntry.ResultString = JSonUtils.ConvertObjectToJSon <SatyamAggregatedResult>(SatyamAggResult);


                    aggEntries.Add(aggEntry);
                    List <SatyamAggregatedResultsTableEntry> tmpEntries = new List <SatyamAggregatedResultsTableEntry>();
                    tmpEntries.Add(aggEntry);

                    //ValidateSatyamKITTIDetectionAggregationResult(tmpEntries, saveImage, MinHeight, MaxOcclusion, Max_Truncation);
                }
            }
            Console.WriteLine("Total_Aggregated_Tasks: {0}", noTotalConverged);
            Console.WriteLine("Total_Terminated_Tasks: {0}", noTerminatedTasks);

            SatyamResultsAnalysis.RecordAggregationLog(noResultsNeededForAggregation_new, configString, guids[0]);

            string r = ValidatePascalVOCImageSegmentationResult_InstanceLevel(aggEntries, IoUTreshold);

            r = noTotalConverged + " " + noTerminatedTasks + " " + r;
            File.WriteAllText(DirectoryConstants.defaultTempDirectory + "\\ImageSegmentationResult\\" + configString + ".txt", r);


            if (approvalAnalysis)
            {
                string approvalString = configString + "_PayCover_" + TaskConstants.IMAGE_SEGMENTATION_MTURK_OBJECT_COVERAGE_THRESHOLD_FOR_PAYMENT +
                                        "_PayIoU_" + TaskConstants.IMAGE_SEGMENTATION_MTURK_POLYGON_IOU_THRESHOLD_FOR_PAYMENT;
                //for (double ratio = 0; ratio < 1; ratio += 0.2)
                //{
                //    SatyamResultsAnalysis.AnalyzeApprovalRate(aggEntries, entriesBySubmitTime, noResultsNeededForAggregation, noResultsNeededForAggregation_new, guids[0], configString, approvalRatioThreshold: ratio);
                //}
                SatyamResultsAnalysis.AggregationAnalysis(aggEntries, entriesBySubmitTime, noResultsNeededForAggregation, noResultsNeededForAggregation_new, guids[0], configString);
            }
        }
コード例 #14
0
        public static void StaticOfflineAggregationWithParameterAndValidation(List <string> guids,
                                                                              double IoUTreshold,
                                                                              int MinResults = TaskConstants.IMAGE_SEGMENTATION_MTURK_MIN_RESULTS_TO_AGGREGATE,
                                                                              int MaxResults = TaskConstants.IMAGE_SEGMENTATION_MTURK_MAX_RESULTS_TO_AGGREGATE,
                                                                              double CategoryMajorityThreshold        = TaskConstants.IMAGE_SEGMENTATION_MTURK_MAJORITY_CATEGORY_THRESHOLD,
                                                                              double PolygonBoundaryMajorityThreshold = TaskConstants.IMAGE_SEGMENTATION_MTURK_MAJORITY_POLYGON_BOUNDARY_THRESHOLD,
                                                                              double ObjectsCoverageThreshold         = TaskConstants.IMAGE_SEGMENTATION_MTURK_OBJECT_COVERAGE_THRESHOLD_FOR_AGGREGATION_TERMINATION,
                                                                              double minSimilarityThreshold           = TaskConstants.IMAGE_SEGMENTATION_MTURK_POLYGON_IOU_THRESHOLD,
                                                                              int minResultsForConsensus = TaskConstants.IMAGE_SEGMENTATION_MTURK_MIN_RESULTS_FOR_CONSENSUS)
        {
            SatyamResultsTableAccess resultsDB = new SatyamResultsTableAccess();

            Dictionary <int, List <string> > WorkersPerTask = new Dictionary <int, List <string> >();

            List <SatyamResultsTableEntry> entries = new List <SatyamResultsTableEntry>();

            foreach (string guid in guids)
            {
                entries.AddRange(resultsDB.getEntriesByGUIDOrderByID(guid));
            }
            resultsDB.close();

            SortedDictionary <int, List <SatyamResultsTableEntry> > EntriesPerTask = new SortedDictionary <int, List <SatyamResultsTableEntry> >();
            SortedDictionary <int, List <ImageSegmentationResult> > ResultsPerTask = new SortedDictionary <int, List <ImageSegmentationResult> >();
            List <int> aggregatedTasks = new List <int>();

            int noTotalConverged = 0;
            //int noCorrect = 0;
            int noTerminatedTasks = 0;

            List <SatyamAggregatedResultsTableEntry> aggEntries = new List <SatyamAggregatedResultsTableEntry>();

            // Organize by taskID
            foreach (SatyamResultsTableEntry entry in entries)
            {
                SatyamResult satyamResult = JSonUtils.ConvertJSonToObject <SatyamResult>(entry.ResultString);
                int          taskEntryID  = entry.SatyamTaskTableEntryID;

                if (!EntriesPerTask.ContainsKey(taskEntryID))
                {
                    EntriesPerTask.Add(taskEntryID, new List <SatyamResultsTableEntry>());
                    ResultsPerTask.Add(taskEntryID, new List <ImageSegmentationResult>());
                }
                EntriesPerTask[taskEntryID].Add(entry);
                ResultsPerTask[taskEntryID].Add(JSonUtils.ConvertJSonToObject <ImageSegmentationResult>(satyamResult.TaskResult));
            }
            foreach (int taskEntryID in EntriesPerTask.Keys)
            {
                SatyamResult satyamResult = JSonUtils.ConvertJSonToObject <SatyamResult>(EntriesPerTask[taskEntryID][0].ResultString);
                SatyamTask   task         = JSonUtils.ConvertJSonToObject <SatyamTask>(satyamResult.TaskParametersString);
                SatyamJob    job          = task.jobEntry;
                string       fileName     = URIUtilities.filenameFromURINoExtension(task.SatyamURI);

                List <int> taskidfilter = new List <int>()
                {
                    40430,
                    40432,
                    40433,
                    40434,
                    40440,
                    40447,
                    40451,
                    40460,
                };

                //if (fileName != "2007_000549") continue;

                if (!taskidfilter.Contains(satyamResult.TaskTableEntryID))
                {
                    continue;
                }

                Console.WriteLine("Aggregating task {0}: {1} results", taskEntryID, EntriesPerTask[taskEntryID].Count);
                ImageSegmentationAggregatedResult aggResult = ImageSegmentationAggregator.getAggregatedResult(
                    ResultsPerTask[taskEntryID], task.SatyamURI, job.JobGUIDString,
                    MinResults, MaxResults, CategoryMajorityThreshold,
                    PolygonBoundaryMajorityThreshold, ObjectsCoverageThreshold,
                    minSimilarityThreshold, minResultsForConsensus);
                if (aggResult == null)
                {
                    continue;
                }

                // aggregation happen

                aggregatedTasks.Add(taskEntryID);
                noTotalConverged++;
                if (ResultsPerTask[taskEntryID].Count >= MaxResults)
                {
                    noTerminatedTasks++;
                }
                SatyamAggregatedResult SatyamAggResult = new SatyamAggregatedResult();
                SatyamAggResult.SatyamTaskTableEntryID = taskEntryID;
                SatyamAggResult.AggregatedResultString = JSonUtils.ConvertObjectToJSon <ImageSegmentationAggregatedResult>(aggResult);
                SatyamAggResult.TaskParameters         = satyamResult.TaskParametersString;

                SatyamAggregatedResultsTableEntry aggEntry = new SatyamAggregatedResultsTableEntry();
                aggEntry.SatyamTaskTableEntryID = taskEntryID;
                aggEntry.JobGUID      = job.JobGUIDString;
                aggEntry.ResultString = JSonUtils.ConvertObjectToJSon <SatyamAggregatedResult>(SatyamAggResult);


                aggEntries.Add(aggEntry);
                List <SatyamAggregatedResultsTableEntry> tmpEntries = new List <SatyamAggregatedResultsTableEntry>();
                tmpEntries.Add(aggEntry);

                ValidatePascalVOCImageSegmentationResult_InstanceLevel(tmpEntries, IoUTreshold);
            }
            Console.WriteLine("Total_Aggregated_Tasks: {0}", noTotalConverged);
            Console.WriteLine("Total_Terminated_Tasks: {0}", noTerminatedTasks);

            string r = ValidatePascalVOCImageSegmentationResult_InstanceLevel(aggEntries, IoUTreshold);
        }
コード例 #15
0
        public static void ValidatePascalVOCImageSegmentationResult_ClassLevel(
            List <SatyamAggregatedResultsTableEntry> resultsPerImage,
            List <double> IoUTresholds)
        {
            SortedDictionary <int, SatyamAggregatedResultsTableEntry> aggResults = new SortedDictionary <int, SatyamAggregatedResultsTableEntry>();

            for (int i = 0; i < resultsPerImage.Count; i++)
            {
                int taskID = resultsPerImage[i].SatyamTaskTableEntryID;
                aggResults.Add(taskID, resultsPerImage[i]);
            }


            SortedDictionary <double, int> tpPerIoU = new SortedDictionary <double, int>();
            SortedDictionary <double, int> fpPerIoU = new SortedDictionary <double, int>();
            SortedDictionary <double, int> fnPerIoU = new SortedDictionary <double, int>();

            foreach (double iou in IoUTresholds)
            {
                tpPerIoU.Add(iou, 0);
                fpPerIoU.Add(iou, 0);
                fnPerIoU.Add(iou, 0);
            }

            foreach (int id in aggResults.Keys)
            {
                SatyamSaveAggregatedDataSatyam data = new SatyamSaveAggregatedDataSatyam(aggResults[id]);
                string fileName = URIUtilities.filenameFromURINoExtension(data.SatyamURI);
                PascalVOCSegmentationGroundTruth gt = new PascalVOCSegmentationGroundTruth(fileName);

                Console.WriteLine("Results for {0}", fileName);

                String resultString = data.AggregatedResultString;
                ImageSegmentationAggregatedResult result = JSonUtils.ConvertJSonToObject <ImageSegmentationAggregatedResult>(resultString);

                string PNG_URL = result.metaData.PNG_URL;

                //List<List<double>> IoUs = gt.getIoUs(result.boxesAndCategories);
                SortedDictionary <int, int> noGroundTruthPixels = new SortedDictionary <int, int>();
                SortedDictionary <int, int> noDetectionPixels   = new SortedDictionary <int, int>();
                //List<List<double>> IoUs = gt.getIoUs(PNG_URL, out noDetectionPixels, out noGroundTruthPixels);
                List <List <double> > IoUs = gt.getGTOverlaps(PNG_URL, out noDetectionPixels, out noGroundTruthPixels);

                List <int> DetectionAreas   = noDetectionPixels.Values.ToList();
                List <int> GroundtruthAreas = noGroundTruthPixels.Values.ToList();
                if (IoUs == null)
                {
                    continue;
                }


                //double smallAreaToIgnore = 1000;//px
                //double smallAreaToIgnore = 625;//px
                double smallAreaToIgnore = 1600;//px

                List <int> matchedDetections = new List <int>();
                for (int i = 0; i < IoUs.Count; i++)
                {
                    if (GroundtruthAreas[i] < smallAreaToIgnore)
                    {
                        continue;
                    }
                    List <double> ious   = IoUs[i];
                    double        maxIoU = 0;
                    int           idx    = -1;
                    for (int j = 0; j < ious.Count; j++)
                    {
                        if (ious[j] > maxIoU)
                        {
                            maxIoU = ious[j];
                            idx    = j;
                        }
                    }

                    if (maxIoU == 0)
                    {
                        Console.WriteLine("No Match");

                        foreach (double iou in IoUTresholds)
                        {
                            fnPerIoU[iou]++;
                        }
                        continue;
                    }

                    if (DetectionAreas[idx] < smallAreaToIgnore)
                    {
                        continue;
                    }


                    Console.WriteLine("Match: {0}", maxIoU);
                    matchedDetections.Add(idx);

                    foreach (double iou in IoUTresholds)
                    {
                        if (maxIoU >= iou)
                        {
                            tpPerIoU[iou]++;
                        }
                        else
                        {
                            fpPerIoU[iou]++;
                            fnPerIoU[iou]++;
                        }
                    }
                }

                for (int j = 0; j < IoUs[0].Count; j++)
                {
                    if (matchedDetections.Contains(j))
                    {
                        continue;
                    }
                    if (DetectionAreas[j] < smallAreaToIgnore)
                    {
                        continue;
                    }

                    double maxIoU = 0;
                    int    idx    = -1;
                    for (int i = 0; i < IoUs.Count; i++)
                    {
                        if (IoUs[i][j] > maxIoU)
                        {
                            maxIoU = IoUs[i][j];
                            idx    = j;
                        }
                    }

                    bool alreadyCounted = false;
                    foreach (double iou in IoUTresholds)
                    {
                        if (maxIoU >= iou)
                        {
                            alreadyCounted = true; break;
                        }
                    }

                    if (alreadyCounted)
                    {
                        continue;
                    }

                    Console.WriteLine("No Groundtruth");

                    foreach (double iou in IoUTresholds)
                    {
                        fpPerIoU[iou]++;
                    }
                }
            }
            double AvgPrec = 0;

            foreach (double iou in IoUTresholds)
            {
                int    tp   = tpPerIoU[iou] + missingGroundTruth.Count;
                int    fp   = fpPerIoU[iou] - missingGroundTruth.Count;
                int    fn   = fnPerIoU[iou] - GroundTruthFilter.Count;
                double ap   = (double)tp / (double)(tp + fp + fn);
                double prec = (double)tp / (double)(tp + fp);
                double recl = (double)tp / (double)(tp + fn);
                string ret  = String.Format("TP: {0}, FP: {1}, FN {2}, AP, {3}, Precision, {4}, Recall, {5}", tp, fp, fn, ap, prec, recl);
                Console.WriteLine(ret);
                AvgPrec += prec;
            }
            AvgPrec /= IoUTresholds.Count;
            Console.WriteLine("AvgPrec :{0}", AvgPrec);
        }
コード例 #16
0
        public static string ValidatePascalVOCImageSegmentationResult_InstanceLevel(
            List <SatyamAggregatedResultsTableEntry> resultsPerImage,
            double IoUTreshold)
        {
            SortedDictionary <int, SatyamAggregatedResultsTableEntry> aggResults = new SortedDictionary <int, SatyamAggregatedResultsTableEntry>();

            for (int i = 0; i < resultsPerImage.Count; i++)
            {
                int taskID = resultsPerImage[i].SatyamTaskTableEntryID;
                aggResults.Add(taskID, resultsPerImage[i]);
            }


            int tp = 0;
            int fp = 0;
            int fn = 0;

            foreach (int id in aggResults.Keys)
            {
                SatyamSaveAggregatedDataSatyam data = new SatyamSaveAggregatedDataSatyam(aggResults[id]);
                string fileName = URIUtilities.filenameFromURINoExtension(data.SatyamURI);
                PascalVOCSegmentationGroundTruth gt = new PascalVOCSegmentationGroundTruth(fileName);

                Console.WriteLine("Results for {0}", fileName);

                String resultString = data.AggregatedResultString;
                ImageSegmentationAggregatedResult result = JSonUtils.ConvertJSonToObject <ImageSegmentationAggregatedResult>(resultString);

                string PNG_URL = result.metaData.PNG_URL;

                //List<List<double>> IoUs = gt.getIoUs(result.boxesAndCategories);
                SortedDictionary <int, int> noGroundTruthPixels = new SortedDictionary <int, int>();
                SortedDictionary <int, int> noDetectionPixels   = new SortedDictionary <int, int>();

                List <List <double> > IoUs = gt.getIoUs(PNG_URL, out noDetectionPixels, out noGroundTruthPixels);


                List <int> DetectionAreas   = noDetectionPixels.Values.ToList();
                List <int> GroundtruthAreas = noGroundTruthPixels.Values.ToList();
                if (IoUs == null)
                {
                    continue;
                }

                MultipartiteWeightTensor matches = new MultipartiteWeightTensor(2);

                matches.setNumPartitionElements(0, IoUs.Count);
                matches.setNumPartitionElements(1, IoUs[0].Count);

                double[,] array = new double[IoUs.Count, IoUs[0].Count];
                for (int j = 0; j < IoUs.Count; j++)
                {
                    for (int k = 0; k < IoUs[0].Count; k++)
                    {
                        array[j, k] = IoUs[j][k];
                    }
                }

                matches.setWeightMatrix(0, 1, array);
                MultipartiteWeightedMatching.GreedyMean matching           = new MultipartiteWeightedMatching.GreedyMean();
                List <MultipartiteWeightedMatch>        polygonAssociation = matching.getMatching(matches);

                //double smallAreaToIgnore = 1000;//px
                //double smallAreaToIgnore = 625;//px
                double smallAreaToIgnore = 1600;//px
                foreach (MultipartiteWeightedMatch match in polygonAssociation)
                {
                    if (match.elementList.ContainsKey(0)) // this contains gt
                    {
                        if (GroundtruthAreas[match.elementList[0]] < smallAreaToIgnore)
                        {
                            continue;
                        }
                        if (match.elementList.ContainsKey(1)) // an aggregated result box has been associated
                        {
                            if (DetectionAreas[match.elementList[1]] < smallAreaToIgnore)
                            {
                                continue;
                            }

                            double IoU = IoUs[match.elementList[0]][match.elementList[1]];
                            Console.WriteLine("Match: {0}", IoU);
                            if (IoU >= IoUTreshold)
                            {
                                tp++;
                            }
                            else
                            {
                                fp++;
                                fn++;
                            }
                        }
                        else
                        {
                            Console.WriteLine("No Match");
                            fn++;
                        }
                    }
                    else
                    {
                        if (DetectionAreas[match.elementList[1]] < smallAreaToIgnore)
                        {
                            continue;
                        }
                        Console.WriteLine("No Groundtruth");
                        fp++;
                    }
                }
            }

            double ap   = (double)tp / (double)(tp + fp + fn);
            double prec = (double)tp / (double)(tp + fp);
            double recl = (double)tp / (double)(tp + fn);
            string ret  = String.Format("TP: {0}, FP: {1}, FN {2}, AP, {3}, Precision, {4}, Recall, {5}", tp, fp, fn, ap, prec, recl);

            Console.WriteLine(ret);
            return(ret);
        }