/// <summary> /// The counter constructor of re-creating <see cref="MatrixFactorizationPredictionTransformer"/> from the context where /// the original transform is saved. /// </summary> public MatrixFactorizationPredictionTransformer(IHostEnvironment host, ModelLoadContext ctx) : base(Contracts.CheckRef(host, nameof(host)).Register(nameof(MatrixFactorizationPredictionTransformer)), ctx) { // *** Binary format *** // <base info> // string: the column name of matrix's column ids. // string: the column name of matrix's row ids. MatrixColumnIndexColumnName = ctx.LoadString(); MatrixRowIndexColumnName = ctx.LoadString(); if (!TrainSchema.TryGetColumnIndex(MatrixColumnIndexColumnName, out int xCol)) { throw Host.ExceptSchemaMismatch(nameof(MatrixColumnIndexColumnName), RecommenderUtils.MatrixColumnIndexKind.Value, MatrixColumnIndexColumnName); } MatrixColumnIndexColumnType = TrainSchema.GetColumnType(xCol); if (!TrainSchema.TryGetColumnIndex(MatrixRowIndexColumnName, out int yCol)) { throw Host.ExceptSchemaMismatch(nameof(MatrixRowIndexColumnName), RecommenderUtils.MatrixRowIndexKind.Value, MatrixRowIndexColumnName); } MatrixRowIndexColumnType = TrainSchema.GetColumnType(yCol); BindableMapper = ScoreUtils.GetSchemaBindableMapper(Host, Model); var schema = GetSchema(); var args = new GenericScorer.Arguments { Suffix = "" }; Scorer = new GenericScorer(Host, args, new EmptyDataView(Host, TrainSchema), BindableMapper.Bind(Host, schema), schema); }
static void Main(string[] args) { using (var p = Process.GetCurrentProcess()) p.PriorityClass = ProcessPriorityClass.Idle; using (var ctx = new Db()) { var shingles = ctx.Shingles.Where(x => x.UseForML).ToArray(); int NextNetworkID = ctx.TrainSchemas.Select(x => x.NetworkID).Max() + 1; for (int i = 0; i <= shingles.Length / shinglesPerNetwork; i++) { int firstShingle = i * shinglesPerNetwork; int shinglesCount = shingles.Length > firstShingle + shinglesPerNetwork ? shinglesPerNetwork : shingles.Length - firstShingle; for (int inputNr = 0; inputNr < shinglesPerNetwork; inputNr++) { var ts = new TrainSchema { ForecastDays = daysToForecast, NetworkID = NextNetworkID + i, Input = true, NeuronID = inputNr, ShingleID = shingles[i * shinglesPerNetwork + inputNr].ID }; } } } }
private protected SingleFeaturePredictionTransformerBase(IHost host, ModelLoadContext ctx, TModel model) : base(host, ctx, model) { FeatureColumnName = ctx.LoadStringOrNull(); if (FeatureColumnName == null) FeatureColumnType = null; else if (!TrainSchema.TryGetColumnIndex(FeatureColumnName, out int col)) throw Host.ExceptSchemaMismatch(nameof(FeatureColumnName), "feature", FeatureColumnName); else FeatureColumnType = TrainSchema[col].Type; BindableMapper = ScoreUtils.GetSchemaBindableMapper(Host, ModelAsPredictor); }
internal SingleFeaturePredictionTransformerBase(IHost host, ModelLoadContext ctx) : base(host, ctx) { FeatureColumn = ctx.LoadStringOrNull(); if (FeatureColumn == null) { FeatureColumnType = null; } else if (!TrainSchema.TryGetColumnIndex(FeatureColumn, out int col)) { throw Host.ExceptSchemaMismatch(nameof(FeatureColumn), RoleMappedSchema.ColumnRole.Feature.Value, FeatureColumn); } else { FeatureColumnType = TrainSchema[col].Type; } BindableMapper = ScoreUtils.GetSchemaBindableMapper(Host, Model); }
internal FieldAwareFactorizationMachinePredictionTransformer(IHostEnvironment host, ModelLoadContext ctx) : base(Contracts.CheckRef(host, nameof(host)).Register(nameof(FieldAwareFactorizationMachinePredictionTransformer)), ctx) { // *** Binary format *** // <base info> // ids of strings: feature columns. // float: scorer threshold // id of string: scorer threshold column // count of feature columns. FAFM uses more than one. int featCount = Model.FieldCount; var featureColumns = new string[featCount]; var featureColumnTypes = new DataViewType[featCount]; for (int i = 0; i < featCount; i++) { featureColumns[i] = ctx.LoadString(); if (!TrainSchema.TryGetColumnIndex(featureColumns[i], out int col)) { throw Host.ExceptSchemaMismatch(nameof(FeatureColumns), "feature", featureColumns[i]); } featureColumnTypes[i] = TrainSchema[col].Type; } FeatureColumns = featureColumns; FeatureColumnTypes = featureColumnTypes; _threshold = ctx.Reader.ReadSingle(); _thresholdColumn = ctx.LoadString(); BindableMapper = ScoreUtils.GetSchemaBindableMapper(Host, Model); var schema = GetSchema(); var args = new BinaryClassifierScorer.Arguments { Threshold = _threshold, ThresholdColumn = _thresholdColumn }; Scorer = new BinaryClassifierScorer(Host, args, new EmptyDataView(Host, TrainSchema), BindableMapper.Bind(Host, schema), schema); }