コード例 #1
0
 /// <summary>
 /// Runs the batch.
 /// </summary>
 /// <param name="dataSet">Data set.</param>
 /// <param name="priors">Priors.</param>
 public void RunBatch(DataSet dataSet, Marginals priors, int niter = 1)
 {
     //			Posteriors = priors;
     //			for (int rr = 0; rr < dataSet.NumberOfResidents; ++rr)
     //			{
     //				Posteriors = TrainModel.Train(dataSet.GetSubSet(rr), Posteriors);
     //			}
     Posteriors = TrainModel.Train(dataSet, priors, niter);
 }
コード例 #2
0
        /// <summary>
        /// Runs the active experiment.
        /// </summary>
        /// <param name="dataSet">Data set.</param>
        /// <param name="holdoutSet">Holdout set.</param>
        /// <param name="numberOfSelections">Number of selections.</param>
        /// <param name="priors">Priors.</param>
        public void RunActive(DataSet dataSet, DataSet holdoutSet, int numberOfSelections, Marginals priors)
        {
            if (ActiveLearners == null)
            {
                throw new InvalidOperationException("Active Learner not provided");
            }

            using (new CodeTimer("Running active experiment: " + Name))
            {
                Console.WriteLine();

                HoldoutMetrics = new HoldoutMetricsCollection {
                    Metrics = new Metrics[dataSet.NumberOfResidents][]
                };

                // Metrics = new MetricsCollection(numberOfSelections);
                PosteriorActivities        = new Bernoulli[dataSet.NumberOfResidents][];
                HoldoutPosteriorActivities = new Bernoulli[dataSet.NumberOfResidents][][];
                IndividualPosteriors       = new Marginals[dataSet.NumberOfResidents];

                var accuracy = new double[dataSet.NumberOfResidents][];

                for (int i = 0; i < dataSet.NumberOfResidents; i++)
                {
                    HoldoutMetrics.Metrics[i] = new Metrics[numberOfSelections];

                    var collection = new List <Metrics>();
                    IndividualPosteriors[i] = new Marginals(priors);

                    // Test on holdout set
                    HoldoutPosteriorActivities[i] = new Bernoulli[numberOfSelections][];
                    accuracy[i] = new double[numberOfSelections];

                    var dataSetForResident    = dataSet.GetSubSet(i);
                    var holdoutSetForResident = holdoutSet.GetSubSet(i);
                    // ActiveLearners[i].Transfer(i, 1);

                    // var individualPosteriors = new Marginals(priors);
                    for (int j = 0; j < numberOfSelections; j++)
                    {
                        PosteriorActivities[i]           = TestModel.Test(dataSetForResident, IndividualPosteriors[i])[0];
                        HoldoutPosteriorActivities[i][j] = TestModel.Test(holdoutSetForResident, IndividualPosteriors[i])[0];

                        if (ActiveLearners[i].Unlabelled.Count == 0)
                        {
                            Console.WriteLine("Empty unlabelled set");
                            break;
                        }

                        // int index = ActiveLearner.GetValueOfInformation(i).ArgMax();
                        int    index;
                        double val;
                        ActiveLearners[i].GetArgMaxVOI(PosteriorActivities[i], IndividualPosteriors[i], out index, out val);

                        // Console.WriteLine("Index {0,4}, VOI {1:N4}", index, value);

                        // Now retrain using this label
                        ActiveLearners[i].UpdateModel(index);
                        //IndividualPosteriors [i] = TrainModel.Train( dataSet.GetSubSet(i, ActiveLearners [i].Labelled.ToList()), priors, 10);
                        IndividualPosteriors[i] = TrainModel.Train(dataSet.GetSubSet(i, index), IndividualPosteriors[i], 50);

                        var metrics = new Metrics {
                            Name = Name, Estimates = HoldoutPosteriorActivities[i][j], TrueLabels = holdoutSet.Labels[i]
                        };
                        accuracy[i][j] = metrics.AverageAccuracy;

                        collection.Add(metrics);
                    }

                    // PrintPredictions(posteriorActivities.Select(ia => ia[0]).ToArray(), testLabels.Select(ia => ia[0]).ToArray());
                    HoldoutMetrics.Metrics[i] = collection.ToArray();

                    Console.WriteLine("{0,20}, Resident {1}, \n\t\tClass ratio       {5}, \n\t\tHold out accuracy {2:N2}, \n\t\tAccuracies {3} \n\t\tBriers     {4}\n",
                                      Name, i, collection.Average(ia => ia.AverageAccuracy).ToString("N2"),
                                      string.Join(", ", collection.Select(ia => ia.AverageAccuracy.ToString("N2"))),
                                      string.Join(", ", collection.Select(ia => ia.BrierScore.ToString("N2"))),
                                      holdoutSet.Labels[i].Average().ToString("N2")
                                      );
                }

                HoldoutMetrics.RecomputeAggregateMetrics();
            }
        }
コード例 #3
0
        /// <summary>
        /// Runs the online experiment.
        /// </summary>
        /// <param name="dataSet">Data set.</param>
        /// <param name="holdoutSet">Holdout set.</param>
        /// <param name="priors">Priors.</param>
        public void RunOnline(DataSet dataSet, DataSet holdoutSet, Marginals priors)
        {
            using (new CodeTimer("Running online experiment: " + Name))
            {
                Console.WriteLine();

                Metrics        = new MetricsCollection();
                HoldoutMetrics = new HoldoutMetricsCollection {
                    Metrics = new Metrics[dataSet.NumberOfResidents][]
                };

                PosteriorActivities        = new Bernoulli[dataSet.NumberOfResidents][];
                HoldoutPosteriorActivities = new Bernoulli[dataSet.NumberOfResidents][][];
                IndividualPosteriors       = new Marginals[dataSet.NumberOfResidents];

                var accuracy = new double[dataSet.NumberOfResidents][];

                for (int i = 0; i < dataSet.NumberOfResidents; i++)
                {
                    var collection = new List <Metrics>();
                    HoldoutPosteriorActivities[i] = new Bernoulli[dataSet.NumberOfInstances[i]][];
                    accuracy[i] = new double[dataSet.NumberOfInstances[i]];

                    IndividualPosteriors[i] = new Marginals(priors);
                    PosteriorActivities[i]  = new Bernoulli[dataSet.NumberOfInstances[i]];

                    for (int j = 0; j < dataSet.NumberOfInstances[i]; j++)
                    {
                        var datum = dataSet.GetSubSet(i, j);
                        PosteriorActivities[i][j]        = TestModel.Test(datum, IndividualPosteriors[i])[0][0];
                        HoldoutPosteriorActivities[i][j] = TestModel.Test(holdoutSet.GetSubSet(i), IndividualPosteriors[i])[0];

                        // Test on holdout set
                        var holdoutMetrics = new Metrics {
                            Name = Name, Estimates = HoldoutPosteriorActivities[i][j], TrueLabels = holdoutSet.Labels[i]
                        };
                        accuracy[i][j] = holdoutMetrics.AverageAccuracy;

                        // PrintPrediction(i, temp[0][0], testLabels[0][i], testScores[0][i]);

                        // Now retrain using this label
                        IndividualPosteriors[i] = TrainModel.Train(datum, IndividualPosteriors[i], 10);

                        collection.Add(holdoutMetrics);
                    }

                    // PrintPredictions(posteriorActivities.Select(ia => ia[0]).ToArray(), testLabels.Select(ia => ia[0]).ToArray());
                    Metrics.Add(new Metrics {
                        Name = Name, Estimates = PosteriorActivities[i], TrueLabels = dataSet.Labels[i]
                    }, true);

                    HoldoutMetrics.Metrics[i] = collection.ToArray();

                    Console.WriteLine("{0,20}, Resident {1}, Hold out accuracy {2:N2}", Name, i, collection.Average(ia => ia.AverageAccuracy));
                }

                HoldoutMetrics.RecomputeAggregateMetrics();
                Metrics.RecomputeAggregateMetrics();

                // Console.WriteLine("Accuracies " + string.Join(", ", accuracy.ColumnAverage().Select(x => x.ToString("N2"))));
                // Console.WriteLine("Std. dev.  " + string.Join(", ", accuracy.ColumnStandardDeviation().Select(x => x.ToString("N2"))));
                // Console.WriteLine("Accuracies " + string.Join(", ", HoldoutMetrics.AverageAccuracy.Select(x => x.ToString("N2"))));
            }
        }
コード例 #4
0
        private double ExpectedEvidence(int index, Marginals priors)
        {
            var niter = 1;

            //var pp = hypothesisActivityPosteriors[index];
            bool trueLabel = DataSet.Labels[0][index];


            var labelled = new HashSet <int>(Labelled);

            labelled.Add(index);

            //evidenceData.Labels[0] = evidenceData.Labels[0].Select( ll => !ll ).ToArray();


            // Learn as if positive
            DataSet.Labels[0][index] = true;

            Marginals positivePosteriors = priors;

            try
            {
                if (Reversed)
                {
                    positivePosteriors = priors;
                }
                else
                {
                    positivePosteriors = TrainModel.Train(DataSet.GetSubSet(0, index), priors, niter);
                }
            }
            catch (ImproperMessageException)
            {
                // As fallback use priors
            }

            var positivePriorEvidence = EvidenceModel.ComputeEvidence(DataSet.GetSubSet(0, labelled.ToList()), priors);
            var positivePostrEvidence = EvidenceModel.ComputeEvidence(DataSet.GetSubSet(0, labelled.ToList()), positivePosteriors);



            // Learn as if negative
            DataSet.Labels[0][index] = false;

            Marginals negativePosteriors = priors;

            try
            {
                if (Reversed)
                {
                    negativePosteriors = priors;
                }
                else
                {
                    negativePosteriors = TrainModel.Train(DataSet.GetSubSet(0, index), priors, niter);
                }
            }
            catch (ImproperMessageException)
            {
                // As fallback use priors
            }

            var negativePriorEvidence = EvidenceModel.ComputeEvidence(DataSet.GetSubSet(0, labelled.ToList()), priors);
            var negativePostrEvidence = EvidenceModel.ComputeEvidence(DataSet.GetSubSet(0, labelled.ToList()), negativePosteriors);



            DataSet.Labels[0][index] = trueLabel;



            var returns = new List <double>();

            returns.Add(
                (positivePriorEvidence.LogOdds) /
                (negativePriorEvidence.LogOdds)
                );
            //return Math.Max( returns.Last(), 1.0 / returns.Last() );

            returns.Add(
                (positivePostrEvidence.LogOdds) /
                (negativePostrEvidence.LogOdds)
                );
            //return Math.Max( returns.Last(), 1.0 / returns.Last() );

            returns.Add(
                (positivePriorEvidence.LogOdds + positivePostrEvidence.GetLogProbTrue()) /
                (negativePriorEvidence.LogOdds + negativePostrEvidence.GetLogProbTrue())
                );
            return(Math.Max(returns.Last(), 1.0 / returns.Last()));
        }
コード例 #5
0
        public void Validate(int NumberofTimes)
        {
            double error;

            Accuracy  = 0; int size = 0;
            MeanError = VarianceError = 0;
            List <double> errors = new List <double>(NumberofTimes);

            for (int h = 0; h < NumberofTimes; ++h)
            {
                error = 0;
                // shufflling all data randomly and sperate it to list of lists each list contains (datasize/#Ks) data
                Data = ShuffleList <Data>(Data);
                //0 list is for training, and 1 list is for testing
                List <List <Data> > ShuffledData = new List <List <Data> >(K);
                //List<Data> lst = new List<Data>();
                for (int i = 0; i < Kfold; i++)
                {
                    List <Data> lst = new List <Data>();
                    for (int j = 0; j < chunckSize[i]; j++)
                    {
                        lst.Add(Data[i * chunckSize[0] + j]);
                    }
                    ShuffledData.Add(lst);
                }
                List <Data> Training = new List <Data>();
                List <Data> Testing  = null;
                for (int i = 0; i < K; ++i)
                {
                    for (int j = 0; j < K; ++j)
                    {
                        if (j != i)
                        {
                            Training.AddRange(ShuffledData[j]);
                        }
                        else
                        {
                            Testing = ShuffledData[j];
                        }
                    }
                    // train and test k-folds
                    TrainModel train = new TrainModel(fType, cType);
                    train.Train(Training);
                    ScoreModel score = new ScoreModel(train, K);
                    score.Score(Testing);
                    error    += score.MissedRows;
                    Accuracy += Testing.Count - score.MissedRows;
                    size     += Testing.Count;
                }
                error /= Data.Count;
                errors.Add(error);
                MeanError += error;
            }
            error      = 0;
            MeanError /= NumberofTimes;
            for (int i = 0; i < NumberofTimes; ++i)
            {
                error += Math.Pow(MeanError - errors[i], 2);
            }
            VarianceError = error / (NumberofTimes - 1);
            Accuracy     /= size * 100;
        }
コード例 #6
0
        private double JAll_j(int index, Bernoulli[] activityPosteriors, Marginals priors)
        {
            // var prevProbs = activityPosteriors.Select(ia => new Bernoulli(ia)).ToArray();
            hypothesisActivityPosteriors = activityPosteriors.Select(ia => new Bernoulli(ia)).ToArray();

            // Get datum
            // var datum = DataSet.GetSubSet(0, index);
            bool trueLabel = DataSet.Labels[0][index];

            // Create copies of the Labelled an Unlabelled sets
            var labelled   = new HashSet <int>(Labelled);
            var unlabelled = new HashSet <int>(Unlabelled);

            labelled.Add(index);
            unlabelled.Remove(index);

            // datum.Labels[0][0] = true;
            DataSet.Labels[0][index] = true;

            // Learn as if positive
            // var positivePosteriors = TrainModel.Train(datum, priors, 1);
            Marginals positivePosteriors = priors;

            try
            {
                positivePosteriors = TrainModel.Train(DataSet.GetSubSet(0, index), priors, 1);
            }
            catch (ImproperMessageException)
            {
                // As fallback use priors
            }

            // recompute probabilities
            CalculateProbabilities(positivePosteriors);

            //var jjposl = JL(labelled);
            //var jjposu = JU(unlabelled);
            var Jjpos = (JAll()) * (1.0 - hypothesisActivityPosteriors[index].GetMean());

            // Restore posteriors

            labelled.Add(index);
            unlabelled.Remove(index);

            // datum.Labels[0][0] = false;
            DataSet.Labels[0][index] = false;

            // Learn as if negative
            // var negativePosteriors = TrainModel.Train(datum, priors, 1);
            Marginals negativePosteriors = priors;

            try
            {
                negativePosteriors = TrainModel.Train(DataSet.GetSubSet(0, index), priors, 1);
            }
            catch (ImproperMessageException)
            {
                // As fallback use priors
            }

            // recompute probabilities
            CalculateProbabilities(negativePosteriors);

            //var jjnegl = JL(labelled);
            //var jjnegu = JU(unlabelled);
            var Jjneg = (JAll()) * (hypothesisActivityPosteriors[index].GetMean());

            // restore posteriors
            // activityPosteriors = prevProbs;
            DataSet.Labels[0][index] = trueLabel;

            var voi = Jjpos + Jjneg;

            return(voi);
        }