public void Hessian___Gradient___Calculation___Test() { int accuracy = 15; /* * function obliczanie_hesjan_gradient() * clear(); * inp = [-1 -1;-1 1; 1 -1]; * dout = [1;0;0]; * topo = [3 1 2 4 1 2 3]; * ww = [1 1 1 1 1 1 1]; * act = [2 0]; * gain = [1 1]; * param = [3 2 1 7 2]; * iw = [1 4 8]; * format long; * * [gradient,hessian] = Hessian(inp,dout,topo,ww,act,gain,param,iw); * fprintf('Otrzymany gradient:\n'); * disp(gradient); * fprintf('\nOtrzymany hesjan:\n'); * disp(hessian); * * % To jest otrzymywane * % Otrzymany gradient: * % -0.839948683228052 * % 2.319597374905329 * % 2.319597374905329 * % -2.000000000000000 * % 5.523188311911530 * % 5.523188311911531 * % 6.889667569278484 * % * % * % Otrzymany hesjan: * % Columns 1 through 6 * % * % 1.058270685684809 -0.705513790456539 -0.705513790456539 2.519846049684157 -1.679897366456105 -1.679897366456105 * % -0.705513790456539 1.058270685684809 0.352756895228269 -1.679897366456105 2.519846049684157 0.839948683228052 * % -0.705513790456539 0.352756895228269 1.058270685684809 -1.679897366456105 0.839948683228052 2.519846049684157 * % 2.519846049684157 -1.679897366456105 -1.679897366456105 6.000000000000000 -4.000000000000000 -4.000000000000000 * % -1.679897366456105 2.519846049684157 0.839948683228052 -4.000000000000000 6.000000000000000 2.000000000000000 * % -1.679897366456105 0.839948683228052 2.519846049684157 -4.000000000000000 2.000000000000000 6.000000000000000 * % -0.639700008449225 1.279400016898449 1.279400016898449 -1.523188311911530 3.046376623823059 3.046376623823059 * % * % Column 7 * % * % -0.639700008449225 * % 1.279400016898449 * % 1.279400016898449 * % -1.523188311911530 * % 3.046376623823059 * % 3.046376623823059 * % 3.480153950315843 * end */ Input input = new Input(3, 2);//inp = [-1 -1;-1 1; 1 -1]; input[0, 0] = -1; input[0, 1] = -1; input[1, 0] = -1; input[1, 1] = 1; input[2, 0] = 1; input[2, 1] = -1; Output output = new Output(3, 1);//dout = [1;0;0]; output[0, 0] = 1; output[1, 0] = 0; output[2, 0] = 0; NetworkInfo info = new NetworkInfo();//param = [3 2 1 7 2]; info.ni = 2; info.nn = 2; info.no = 1; info.np = 3; info.nw = 7; VectorHorizontal vh = new VectorHorizontal(3); vh[0, 0] = 2; vh[0, 1] = 1; vh[0, 2] = 1; Topography topo = Topography.Generate(TopographyType.BMLP, vh);//topo = [3 1 2 4 1 2 3]; //w C# indeksy są od zera a nie od 1 więc wszystko o 1 w dół przestawione jest Assert.AreEqual(2, topo[0]); Assert.AreEqual(0, topo[1]); Assert.AreEqual(1, topo[2]); Assert.AreEqual(3, topo[3]); Assert.AreEqual(0, topo[4]); Assert.AreEqual(1, topo[5]); Assert.AreEqual(2, topo[6]); Weights weights = new Weights(info.nw); //w = [1 1 1 1 1 1 1]; weights.FillWithNumber(1); //załatwione Activation act = new Activation(2); //act = [2 0]; act[0] = 2; act[1] = 0; Gain gain = new Gain(2);//gain = [1 1]; gain[0] = 1; gain[1] = 1; Index iw = Index.Find(ref topo);//iw = [1 4 8]; //ta sama sytuacja, indeksy od 0 startują Assert.AreEqual(0, iw[0]); Assert.AreEqual(3, iw[1]); Assert.AreEqual(7, iw[2]); Console.WriteLine("Testowanie obliczania gradientu i macierzy hesjana"); Console.WriteLine("Użyte dane:"); Console.WriteLine("\nDane wejściowe:"); Console.WriteLine(input.MatrixToString()); Console.WriteLine("\nDane wyjściowe:"); Console.WriteLine(output.MatrixToString()); Console.WriteLine("\nWagi;"); Console.WriteLine(weights.MatrixToString()); Console.WriteLine("\nTopologia:"); Console.WriteLine(topo.MatrixToString()); Console.WriteLine("\nIndeksy topologii:"); Console.WriteLine(iw.MatrixToString()); Console.WriteLine("\nFunkcje aktywacji:"); Console.WriteLine(act.MatrixToString()); Console.WriteLine("\nWzmocnienia (gains):"); Console.WriteLine(gain.MatrixToString()); Console.WriteLine("\nParametry (param):"); Console.WriteLine(info.ToString()); Hessian hess = new Hessian(ref info); hess.Compute(ref info, ref input, ref output, ref topo, weights, ref act, ref gain, ref iw); var g = hess.GradientMat; var h = hess.HessianMat; Console.WriteLine("\nSprawdzanie gradientu z dokładnością do 15 miejsc po przecinku"); var matG = new double[] { -0.839948683228052, 2.319597374905329, 2.319597374905329, -2.000000000000000, 5.523188311911530, 5.523188311911531, 6.889667569278484 }; /* * % Otrzymany gradient: * % -0.839948683228052 * % 2.319597374905329 * % 2.319597374905329 * % -2.000000000000000 * % 5.523188311911530 * % 5.523188311911531 * % 6.889667569278484 */ for (int i = 0; i < matG.Length; i++) { Console.WriteLine(string.Format("NBN C#: {0}\tMatLab NBN: {1}\t{2}", Math.Round(g[i, 0], accuracy), matG[i], Math.Round(g[i, 0], accuracy) == matG[i] ? "OK" : "źle")); } Assert.AreEqual(-0.839948683228052, Math.Round(g[0, 0], accuracy)); Assert.AreEqual(2.319597374905329, Math.Round(g[1, 0], accuracy)); Assert.AreEqual(2.319597374905329, Math.Round(g[2, 0], accuracy)); Assert.AreEqual(-2.000000000000000, Math.Round(g[3, 0], accuracy)); Assert.AreEqual(5.523188311911530, Math.Round(g[4, 0], accuracy)); Assert.AreEqual(5.523188311911531, Math.Round(g[5, 0], accuracy)); Assert.AreEqual(6.889667569278484, Math.Round(g[6, 0], accuracy)); Console.WriteLine("\nSprawdzanie macierzy hesjana\nPorównania z dokładnością do 15 miejsc po przecinku"); MatrixMB matH = new MatrixMB(7, 7); //col 1 matH[0, 0] = 1.058270685684809; matH[1, 0] = -0.705513790456539; matH[2, 0] = -0.705513790456539; matH[3, 0] = 2.519846049684157; matH[4, 0] = -1.679897366456105; matH[5, 0] = -1.679897366456105; matH[6, 0] = -0.639700008449225; //col 2 matH[0, 1] = -0.705513790456539; matH[1, 1] = 1.058270685684809; matH[2, 1] = 0.352756895228269; matH[3, 1] = -1.679897366456105; matH[4, 1] = 2.519846049684157; matH[5, 1] = 0.839948683228052; matH[6, 1] = 1.279400016898449; //col 3 matH[0, 2] = -0.705513790456539; matH[1, 2] = 0.352756895228269; matH[2, 2] = 1.058270685684809; matH[3, 2] = -1.679897366456105; matH[4, 2] = 0.839948683228052; matH[5, 2] = 2.519846049684157; matH[6, 2] = 1.279400016898449; //col 4 matH[0, 3] = 2.519846049684157; matH[1, 3] = -1.679897366456105; matH[2, 3] = -1.679897366456105; matH[3, 3] = 6.000000000000000; matH[4, 3] = -4.000000000000000; matH[5, 3] = -4.000000000000000; matH[6, 3] = -1.523188311911530; //col 5 matH[0, 4] = -1.679897366456105; matH[1, 4] = 2.519846049684157; matH[2, 4] = 0.839948683228052; matH[3, 4] = -4.000000000000000; matH[4, 4] = 6.000000000000000; matH[5, 4] = 2.000000000000000; matH[6, 4] = 3.046376623823059; //col 6 matH[0, 5] = -1.679897366456105; matH[1, 5] = 0.839948683228052; matH[2, 5] = 2.519846049684157; matH[3, 5] = -4.000000000000000; matH[4, 5] = 2.000000000000000; matH[5, 5] = 6.000000000000000; matH[6, 5] = 3.046376623823059; //col 7 matH[0, 6] = -0.639700008449225; matH[1, 6] = 1.279400016898449; matH[2, 6] = 1.279400016898449; matH[3, 6] = -1.523188311911530; matH[4, 6] = 3.046376623823059; matH[5, 6] = 3.046376623823059; matH[6, 6] = 3.480153950315843; for (int k = 0; k < h.Cols; k++) { Console.WriteLine(string.Format("Kolumna {0}", k + 1)); for (int w = 0; w < h.Rows; w++) { decimal dh = Math.Round((decimal)h[w, k], accuracy); decimal dmh = Math.Round((decimal)matH[w, k], accuracy); Console.WriteLine(string.Format("NBN C#: {0}\tMatLab NBN: {1}\t{2}", dh, dmh, dh == dmh ? "OK" : "źle")); } Console.WriteLine(""); } for (int k = 0; k < h.Cols; k++) { for (int w = 0; w < h.Rows; w++) { decimal dh = Math.Round((decimal)h[w, k], accuracy); decimal dmh = Math.Round((decimal)matH[w, k], accuracy); Assert.AreEqual(dmh, dh); } } /* * % Otrzymany hesjan: * % Columns 1 through 6 * % * % 1.058270685684809 -0.705513790456539 -0.705513790456539 2.519846049684157 -1.679897366456105 -1.679897366456105 * % -0.705513790456539 1.058270685684809 0.352756895228269 -1.679897366456105 2.519846049684157 0.839948683228052 * % -0.705513790456539 0.352756895228269 1.058270685684809 -1.679897366456105 0.839948683228052 2.519846049684157 * % 2.519846049684157 -1.679897366456105 -1.679897366456105 6.000000000000000 -4.000000000000000 -4.000000000000000 * % -1.679897366456105 2.519846049684157 0.839948683228052 -4.000000000000000 6.000000000000000 2.000000000000000 * % -1.679897366456105 0.839948683228052 2.519846049684157 -4.000000000000000 2.000000000000000 6.000000000000000 * % -0.639700008449225 1.279400016898449 1.279400016898449 -1.523188311911530 3.046376623823059 3.046376623823059 * % * % Column 7 * % * % -0.639700008449225 * % 1.279400016898449 * % 1.279400016898449 * % -1.523188311911530 * % 3.046376623823059 * % 3.046376623823059 * % 3.480153950315843 */ }
public void Test___Error___Calculation___Test() { /* * * * Kod testowy matlaba * * function obliczanie_bledu() * inp = [-1 -1;-1 1; 1 -1]; * dout = [1;0;0]; * topo = [3 1 2 4 1 2 3]; * w = [1 1 1 1 1 1 1]; * act = [2 0]; * gain = [1 1]; * param = [3 2 1 7 2]; * iw = [1 4 8]; * format long; * error = calculate_error(inp,dout,topo,w,act,gain,param,iw); * fprintf('Obliczanie błędu uczenia sieci\nBłąd wynosi: %.20f\n', error); * %Otrzymany wynik * %Obliczanie błędu uczenia sieci * %Błąd wynosi: 13.83283022280404000000 * end * * */ Input input = new Input(3, 2);//inp = [-1 -1;-1 1; 1 -1]; input[0, 0] = -1; input[0, 1] = -1; input[1, 0] = -1; input[1, 1] = 1; input[2, 0] = 1; input[2, 1] = -1; Output output = new Output(3, 1);//dout = [1;0;0]; output[0, 0] = 1; output[1, 0] = 0; output[2, 0] = 0; NetworkInfo info = new NetworkInfo();//param = [3 2 1 7 2]; info.ni = 2; info.nn = 2; info.no = 1; info.np = 3; info.nw = 7; VectorHorizontal vh = new VectorHorizontal(3); vh[0, 0] = 2; vh[0, 1] = 1; vh[0, 2] = 1; Topography topo = Topography.Generate(TopographyType.BMLP, vh);//topo = [3 1 2 4 1 2 3]; //w C# indeksy są od zera a nie od 1 więc wszystko o 1 w dół przestawione jest Assert.AreEqual(2, topo[0]); Assert.AreEqual(0, topo[1]); Assert.AreEqual(1, topo[2]); Assert.AreEqual(3, topo[3]); Assert.AreEqual(0, topo[4]); Assert.AreEqual(1, topo[5]); Assert.AreEqual(2, topo[6]); Weights weights = new Weights(info.nw); //w = [1 1 1 1 1 1 1]; weights.FillWithNumber(1); //załatwione Activation act = new Activation(2); //act = [2 0]; act[0] = 2; act[1] = 0; Gain gain = new Gain(2);//gain = [1 1]; gain[0] = 1; gain[1] = 1; Index iw = Index.Find(ref topo);//iw = [1 4 8]; //ta sama sytuacja, indeksy od 0 startują Assert.AreEqual(0, iw[0]); Assert.AreEqual(3, iw[1]); Assert.AreEqual(7, iw[2]); NetworkError ne = new NetworkError(); var error = ne.CalculateError(ref info, ref input, ref output, ref topo, weights, ref act, ref gain, ref iw); double errorFromMatLab = 13.83283022280404000000; Console.WriteLine("Testowanie obliczania błędu"); Console.WriteLine("Użyte dane:"); Console.WriteLine("\nDane wejściowe:"); Console.WriteLine(input.MatrixToString()); Console.WriteLine("\nDane wyjściowe:"); Console.WriteLine(output.MatrixToString()); Console.WriteLine("\nWagi;"); Console.WriteLine(weights.MatrixToString()); Console.WriteLine("\nTopologia:"); Console.WriteLine(topo.MatrixToString()); Console.WriteLine("\nIndeksy topologii:"); Console.WriteLine(iw.MatrixToString()); Console.WriteLine("\nFunkcje aktywacji:"); Console.WriteLine(act.MatrixToString()); Console.WriteLine("\nWzmocnienia (gains):"); Console.WriteLine(gain.MatrixToString()); Console.WriteLine("\nParametry (param):"); Console.WriteLine(info.ToString()); Assert.AreEqual(errorFromMatLab, error); Console.WriteLine(string.Format("{0} - wynik NBN C#", error)); Console.WriteLine(string.Format("{0} - wynik NBN w MatLabie", errorFromMatLab)); }