コード例 #1
0
        public void TestEstimatorSaveLoad()
        {
            using (var env = new TlcEnvironment())
            {
                var dataFile    = GetDataPath("images/images.tsv");
                var imageFolder = Path.GetDirectoryName(dataFile);
                var data        = env.CreateLoader("Text{col=ImagePath:TX:0 col=Name:TX:1}", new MultiFileSource(dataFile));

                var pipe = new ImageLoaderEstimator(env, imageFolder, ("ImagePath", "ImageReal"))
                           .Append(new ImageResizerEstimator(env, "ImageReal", "ImageReal", 100, 100))
                           .Append(new ImagePixelExtractorEstimator(env, "ImageReal", "ImagePixels"))
                           .Append(new ImageGrayscaleEstimator(env, ("ImageReal", "ImageGray")));

                pipe.GetOutputSchema(Core.Data.SchemaShape.Create(data.Schema));
                var model = pipe.Fit(data);

                using (var file = env.CreateTempFile())
                {
                    using (var fs = file.CreateWriteStream())
                        model.SaveTo(env, fs);
                    var model2 = TransformerChain.LoadFrom(env, file.OpenReadStream());

                    var newCols = ((ImageLoaderTransform)model2.First()).Columns;
                    var oldCols = ((ImageLoaderTransform)model.First()).Columns;
                    Assert.True(newCols
                                .Zip(oldCols, (x, y) => x == y)
                                .All(x => x));
                }
            }
            Done();
        }
コード例 #2
0
        public void TrainSaveModelAndPredict()
        {
            var dataPath     = GetDataPath(SentimentDataPath);
            var testDataPath = GetDataPath(SentimentTestPath);

            using (var env = new TlcEnvironment(seed: 1, conc: 1))
            {
                // Pipeline
                var loader = new TextLoader(env, MakeSentimentTextLoaderArgs(), new MultiFileSource(dataPath));

                var trans = TextTransform.Create(env, MakeSentimentTextTransformArgs(), loader);

                // Train
                var trainer = new LinearClassificationTrainer(env, new LinearClassificationTrainer.Arguments
                {
                    NumThreads = 1
                });

                var cached     = new CacheDataView(env, trans, prefetch: null);
                var trainRoles = new RoleMappedData(cached, label: "Label", feature: "Features");
                var predictor  = trainer.Train(new Runtime.TrainContext(trainRoles));

                PredictionEngine <SentimentData, SentimentPrediction> model;
                using (var file = env.CreateTempFile())
                {
                    // Save model.
                    var scoreRoles = new RoleMappedData(trans, label: "Label", feature: "Features");
                    using (var ch = env.Start("saving"))
                        TrainUtils.SaveModel(env, ch, file, predictor, scoreRoles);

                    // Load model.
                    using (var fs = file.OpenReadStream())
                        model = env.CreatePredictionEngine <SentimentData, SentimentPrediction>(fs);
                }

                // Take a couple examples out of the test data and run predictions on top.
                var testLoader = new TextLoader(env, MakeSentimentTextLoaderArgs(), new MultiFileSource(GetDataPath(SentimentTestPath)));
                var testData   = testLoader.AsEnumerable <SentimentData>(env, false);
                foreach (var input in testData.Take(5))
                {
                    var prediction = model.Predict(input);
                    // Verify that predictions match and scores are separated from zero.
                    Assert.Equal(input.Sentiment, prediction.Sentiment);
                    Assert.True(input.Sentiment && prediction.Score > 1 || !input.Sentiment && prediction.Score < -1);
                }
            }
        }
コード例 #3
0
        public void New_TrainSaveModelAndPredict()
        {
            var dataPath     = GetDataPath(SentimentDataPath);
            var testDataPath = GetDataPath(SentimentTestPath);

            using (var env = new TlcEnvironment(seed: 1, conc: 1))
            {
                var reader = new TextLoader(env, MakeSentimentTextLoaderArgs());
                var data   = reader.Read(new MultiFileSource(dataPath));

                // Pipeline.
                var pipeline = new TextTransform(env, "SentimentText", "Features")
                               .Append(new LinearClassificationTrainer(env, new LinearClassificationTrainer.Arguments {
                    NumThreads = 1
                }, "Features", "Label"));

                // Train.
                var model = pipeline.Fit(data);

                ITransformer loadedModel;
                using (var file = env.CreateTempFile())
                {
                    // Save model.
                    using (var fs = file.CreateWriteStream())
                        model.SaveTo(env, fs);

                    // Load model.
                    loadedModel = TransformerChain.LoadFrom(env, file.OpenReadStream());
                }

                // Create prediction engine and test predictions.
                var engine = loadedModel.MakePredictionFunction <SentimentData, SentimentPrediction>(env);

                // Take a couple examples out of the test data and run predictions on top.
                var testData = reader.Read(new MultiFileSource(GetDataPath(SentimentTestPath)))
                               .AsEnumerable <SentimentData>(env, false);
                foreach (var input in testData.Take(5))
                {
                    var prediction = engine.Predict(input);
                    // Verify that predictions match and scores are separated from zero.
                    Assert.Equal(input.Sentiment, prediction.Sentiment);
                    Assert.True(input.Sentiment && prediction.Score > 1 || !input.Sentiment && prediction.Score < -1);
                }
            }
        }