コード例 #1
0
        bool ConvertShape(Layer layer, ModelBuilder net)
        {
            var shape        = IRShapeInferenceHelper.ShapeInference.OnnxLayoutToTensorShape(layer.pool);
            var permutations = shape.Get8DPermutationsForNCHWPermutationsAndShape(k_FromNCHWtoNHWC);

            // Preserve symbolic shape by operating on int array instead of TensorShape, which would resolve unknown dimensions
            layer.pool = TensorExtensions.Permute(IRShapeInferenceHelper.ShapeInference.OnnxLayoutToTensorShapeLayout(layer.pool), permutations);

            return(true);
        }
コード例 #2
0
        bool ConvertNormal(Layer layer, ModelBuilder net)
        {
            if (layer.inputs.Length == 1)
            {
                return(true);
            }

            var shape        = new TensorShape(layer.pool);
            var permutations = shape.Get8DPermutationsForNCHWPermutationsAndShape(k_FromNCHWtoNHWC);

            // Preserve symbolic shape by operating on int array instead of TensorShape, which would resolve unknown dimensions
            layer.pool = TensorExtensions.Permute(layer.pool, permutations);

            return(true);
        }
コード例 #3
0
        int[] MergeTranspose(int[] transpose0, int[] tranpose1)
        {
            int[] permutations = new int[] { 0, 1, 2, 3, 4, 5, 6, 7 };
            if (transpose0.Length == 4)
            {
                permutations[2] = TensorExtensions.Convert4DTo8DAxis(transpose0[0]);
                permutations[5] = TensorExtensions.Convert4DTo8DAxis(transpose0[1]);
                permutations[6] = TensorExtensions.Convert4DTo8DAxis(transpose0[2]);
                permutations[7] = TensorExtensions.Convert4DTo8DAxis(transpose0[3]);
            }
            else
            {
                permutations[0] = transpose0[0];
                permutations[1] = transpose0[1];
                permutations[2] = transpose0[2];
                permutations[3] = transpose0[3];
                permutations[4] = transpose0[4];
                permutations[5] = transpose0[5];
                permutations[6] = transpose0[6];
                permutations[7] = transpose0[7];
            }

            int[] combinePermutations = new int[] { 0, 1, 2, 3, 4, 5, 6, 7 };
            if (tranpose1.Length == 4)
            {
                combinePermutations[2] = TensorExtensions.Convert4DTo8DAxis(tranpose1[0]);
                combinePermutations[5] = TensorExtensions.Convert4DTo8DAxis(tranpose1[1]);
                combinePermutations[6] = TensorExtensions.Convert4DTo8DAxis(tranpose1[2]);
                combinePermutations[7] = TensorExtensions.Convert4DTo8DAxis(tranpose1[3]);
            }
            else
            {
                combinePermutations[0] = tranpose1[0];
                combinePermutations[1] = tranpose1[1];
                combinePermutations[2] = tranpose1[2];
                combinePermutations[3] = tranpose1[3];
                combinePermutations[4] = tranpose1[4];
                combinePermutations[5] = tranpose1[5];
                combinePermutations[6] = tranpose1[6];
                combinePermutations[7] = tranpose1[7];
            }

            permutations = TensorExtensions.Permute(permutations, combinePermutations);

            return(permutations);
        }
コード例 #4
0
        static public TensorShape?InferOutputShapeNCHW(Layer layer, int[] inputRanks, TensorShape[] inputShapes)
        {
            switch (layer.type)
            {
            case Layer.Type.Conv3D:
            {
                TensorShape X = inputShapes[0];
                // N C D H W, constructor is N D H W C
                // => N = N C = D, D = H, H = W, W = C
                // TODO helper function for that
                X = new TensorShape(X.batch, X.height, X.width, X.channels, X.depth);
                var K = layer.datasets[0].shape;

                Assert.IsNotNull(layer.stride);
                Assert.IsNotNull(layer.pad);
                var pad = X.AdjustPadToKernel(K, layer.stride, layer.pad);

                var O = X.ApplyKernel(K, layer.stride, pad);
                return(new TensorShape(O.batch, O.channels, O.depth, O.height, O.width));
            }

            case Layer.Type.Conv2D:
            case Layer.Type.DepthwiseConv2D:
            {
                TensorShape X = inputShapes[0];
                // N C H W, constructor is N H W C
                // => N = N C = H, H = W, H = C
                // TODO helper function for that
                X = new TensorShape(X.batch, X.width, X.channels, X.height);
                var K = layer.datasets[0].shape;

                Assert.IsNotNull(layer.stride);
                Assert.IsNotNull(layer.pad);
                var pad = X.AdjustPadToKernel(K, layer.stride, layer.pad);

                var O = X.ApplyKernel(K, layer.stride, pad);
                return(new TensorShape(O.batch, O.channels, O.height, O.width));
            }

            case Layer.Type.Conv2DTrans:
            {
                TensorShape X = inputShapes[0];
                // N C H W, constructor is N H W C
                // => N = N C = H, H = W, H = C
                // TODO helper function for that
                X = new TensorShape(X.batch, X.width, X.channels, X.height);
                var K = layer.datasets[0].shape;

                Assert.IsNotNull(layer.stride);
                Assert.IsNotNull(layer.pad);
                // pool size is treated as output_adjustment aka output_padding here
                var outputAdjustment = layer.pool;
                var pad = X.AdjustPadToKernel(K, layer.stride, layer.pad);
                var O   = X.ApplyKernelInverse(K, layer.stride, pad, outputAdjustment);
                return(new TensorShape(O.batch, O.channels, O.height, O.width));
            }

            case Layer.Type.GlobalMaxPool2D:
            case Layer.Type.GlobalAvgPool2D:
            {
                TensorShape X      = inputShapes[0];
                int         rankX  = inputRanks[0];
                List <int>  xShape = ShapeToOnnxLayout(X, rankX);

                for (int i = 2; i < xShape.Count; i++)
                {
                    xShape[i] = 1;
                }
                return(OnnxLayoutToTensorShape(xShape.ToArray()));
            }

            case Layer.Type.Dense:
            {
                TensorShape X = inputShapes[0];
                X = new TensorShape(X.batch, X.width, X.channels, X.height);
                Assert.IsNotNull(layer.datasets);
                var W = layer.datasets[0].shape;
                var O = new TensorShape(X.flatHeight, W.flatWidth);
                return(new TensorShape(O.batch, O.channels, O.height, O.width));
            }

            case Layer.Type.MatMul:
            {
                TensorShape X      = inputShapes[0];
                int         rankX  = inputRanks[0];
                List <int>  xShape = ShapeToOnnxLayout(X, rankX);

                TensorShape Y      = inputShapes[1];
                int         rankY  = inputRanks[1];
                List <int>  yShape = ShapeToOnnxLayout(Y, rankY);

                int rankO = Mathf.Max(rankX, rankY);
                for (int i = 0; i < rankO - rankX; i++)
                {
                    xShape.Insert(0, 1);
                }
                for (int i = 0; i < rankO - rankY; i++)
                {
                    yShape.Insert(0, 1);
                }

                List <int> oShape = new List <int>();

                for (int i = 0; i < rankO - 2; i++)
                {
                    oShape.Add(Mathf.Max(xShape[i], yShape[i]));
                }

                oShape.Add(xShape[rankO - 2]);
                oShape.Add(yShape[rankO - 1]);

                return(OnnxLayoutToTensorShape(oShape.ToArray()));
            }

            case Layer.Type.Border3D:
            {
                TensorShape X = inputShapes[0];
                X = new TensorShape(X.batch, X.height, X.width, X.channels, X.depth);
                Assert.IsNotNull(layer.pad);
                var O = X.ApplyBorder(layer.pad);
                return(new TensorShape(O.batch, O.channels, O.depth, O.height, O.width));
            }

            case Layer.Type.Border2D:
            case Layer.Type.Pad2DReflect:
            case Layer.Type.Pad2DSymmetric:
            case Layer.Type.Pad2DEdge:
            {
                if (inputShapes.Length > 1)
                {
                    return(null);
                }

                TensorShape X = inputShapes[0];
                X = new TensorShape(X.batch, X.width, X.channels, X.height);
                Assert.IsNotNull(layer.pad);
                var O = X.ApplyBorder(layer.pad);
                return(new TensorShape(O.batch, O.channels, O.height, O.width));
            }

            case Layer.Type.Upsample2D:
            {
                if (inputShapes.Length > 1)
                {
                    return(null);
                }

                TensorShape X = inputShapes[0];
                // pool size is treated as upsample coefficient here
                Assert.IsNotNull(layer.pool);
                Assert.AreEqual(layer.pool.Length, 4);
                return(new TensorShape(X.batch * layer.pool[0], X.height * layer.pool[1], X.width * layer.pool[2], X.channels * layer.pool[3]));
            }

            case Layer.Type.Upsample3D:
            {
                if (inputShapes.Length > 1)
                {
                    return(null);
                }

                TensorShape X = inputShapes[0];
                // pool size is treated as upsample coefficient here
                Assert.IsNotNull(layer.pool);
                Assert.AreEqual(layer.pool.Length, 5);
                return(new TensorShape(X.batch * layer.pool[0], X.depth * layer.pool[1], X.height * layer.pool[2], X.width * layer.pool[3], X.channels * layer.pool[4]));
            }

            case Layer.Type.Resample2D:
            {
                TensorShape X = inputShapes[0];
                if (inputShapes.Length > 1)
                {
                    return(null);
                }
                else
                {
                    // pool is treated as resample size here
                    var size = layer.pool;
                    Assert.IsNotNull(size);
                    Assert.AreEqual(size.Length, 4);
                    return(new TensorShape(size[0], size[1], size[2], size[3]));
                }
            }

            case Layer.Type.TopKIndices:
            case Layer.Type.TopKValues:
            {
                // Calculated at runtime: same shape as input 0 with k elements in the dimension specified by axis
                return(null);
            }

            case Layer.Type.NonMaxSuppression:
            {
                int maxOutputBoxesPerClass = 0;

                if (layer.pool.Length > 0)
                {
                    maxOutputBoxesPerClass = layer.pool[0];
                }

                if (maxOutputBoxesPerClass <= 0)
                {
                    return(null);
                }

                return(new TensorShape(maxOutputBoxesPerClass, 3));
            }

            case Layer.Type.NonZero:
            {
                // Calculated at runtime
                return(null);
            }

            case Layer.Type.Add:
            case Layer.Type.Sub:
            case Layer.Type.Mul:
            case Layer.Type.Div:
            case Layer.Type.Pow:
            case Layer.Type.Min:
            case Layer.Type.Max:
            case Layer.Type.Mean:
            case Layer.Type.Greater:
            case Layer.Type.GreaterEqual:
            case Layer.Type.Less:
            case Layer.Type.LessEqual:
            case Layer.Type.Equal:
            case Layer.Type.LogicalOr:
            case Layer.Type.LogicalAnd:
            case Layer.Type.LogicalXor:
            {
                int rankO = 0;
                for (int i = 0; i < inputRanks.Length; i++)
                {
                    rankO = Mathf.Max(inputRanks[i], rankO);
                }
                var O = new List <int>();
                for (int i = 0; i < rankO; i++)
                {
                    O.Add(1);
                }
                for (int i = 0; i < inputShapes.Length; i++)
                {
                    TensorShape X      = inputShapes[i];
                    int         rankX  = inputRanks[i];
                    List <int>  xShape = ShapeToOnnxLayout(X, rankX);

                    for (int k = 0; k < rankO - rankX; k++)
                    {
                        xShape.Insert(0, 1);
                    }

                    for (int k = 0; k < rankO; k++)
                    {
                        O[k] = Math.Max(O[k], xShape[k]);
                    }
                }

                return(OnnxLayoutToTensorShape(O.ToArray()));
            }

            case Layer.Type.Range:
            {
                return(null);    // only const support
            }

            case Layer.Type.ReduceL1:
            case Layer.Type.ReduceL2:
            case Layer.Type.ReduceLogSum:
            case Layer.Type.ReduceLogSumExp:
            case Layer.Type.ReduceMax:
            case Layer.Type.ReduceMean:
            case Layer.Type.ReduceMin:
            case Layer.Type.ReduceProd:
            case Layer.Type.ReduceSum:
            case Layer.Type.ReduceSumSquare:
            case Layer.Type.ArgMax:
            case Layer.Type.ArgMin:
            {
                TensorShape X = inputShapes[0];

                int rank   = inputRanks[0];
                var xShape = ShapeToOnnxLayout(X, rank);

                var axis = layer.axis;
                if (axis < 0)
                {
                    axis = rank + axis;
                }

                xShape[axis] = 1;
                if (layer.alpha != 1.0f)      // keepdim == 0
                {
                    xShape.RemoveAt(axis);
                }

                return(OnnxLayoutToTensorShape(xShape.ToArray()));
            }

            case Layer.Type.Transpose:
            {
                TensorShape X            = inputShapes[0];
                var         permutations = layer.pool;
                if (permutations == null)
                {
                    return(new TensorShape(X.batch, X.width));
                }
                else
                {
                    int        rank   = inputRanks[0];
                    List <int> xShape = ShapeToOnnxLayout(X, rank);

                    // Permutations may already be in padded form for op purposes, so strip down to match rank
                    permutations = permutations.Take(rank).ToArray();

                    var oShape = TensorExtensions.Permute(xShape.ToArray(), permutations);
                    return(OnnxLayoutToTensorShape(oShape));
                }
            }

            case Layer.Type.MaxPool2D:
            case Layer.Type.AvgPool2D:
            {
                TensorShape X = inputShapes[0];
                X = new TensorShape(X.batch, X.width, X.channels, X.height);
                Assert.IsNotNull(layer.pool);
                Assert.IsNotNull(layer.stride);
                Assert.IsNotNull(layer.pad);
                var pad = X.AdjustPadToPool(layer.pool, layer.stride, layer.pad);
                var O   = X.ApplyPool(layer.pool, layer.stride, pad);
                return(new TensorShape(O.batch, O.channels, O.height, O.width));
            }

            case Layer.Type.Load:
            {
                return(layer.datasets[0].shape);
            }

            case Layer.Type.DepthToSpace:
            {
                TensorShape X = inputShapes[0];
                X = new TensorShape(X.batch, X.width, X.channels, X.height);
                // pool size is treated as blocksize here
                Assert.IsNotNull(layer.pool);
                Assert.AreEqual(layer.pool.Length, 2);
                Assert.AreEqual(X.channels % (layer.pool[0] * layer.pool[1]), 0);
                var O = new TensorShape(X.batch, X.height * layer.pool[1], X.width * layer.pool[0], X.channels / (layer.pool[0] * layer.pool[1]));
                return(new TensorShape(O.batch, O.channels, O.height, O.width));
            }

            case Layer.Type.SpaceToDepth:
            {
                TensorShape X = inputShapes[0];
                X = new TensorShape(X.batch, X.width, X.channels, X.height);
                // pool size is treated as blocksize here
                Assert.IsNotNull(layer.pool);
                Assert.AreEqual(layer.pool.Length, 2);
                var O = new TensorShape(X.batch, X.height / layer.pool[1], X.width / layer.pool[0], X.channels * (layer.pool[0] * layer.pool[1]));
                return(new TensorShape(O.batch, O.channels, O.height, O.width));
            }

            case Layer.Type.RandomNormal:
            case Layer.Type.RandomUniform:
            {
                Assert.IsNotNull(layer.pool);
                // pool size is treated as shape constant, if not empty
                // otherwise shape of the previous tensor is used
                if (layer.pool.Length > 0)
                {
                    return(new TensorShape(layer.pool));
                }
                else
                {
                    return(inputShapes[0]);
                }
            }

            case Layer.Type.Multinomial:
            {
                TensorShape X = inputShapes[0];
                Assert.IsNotNull(layer.pool);
                Assert.AreEqual(layer.pool.Length, 1);
                return(new TensorShape(X.batch, layer.pool[0]));
            }

            case Layer.Type.OneHot:
            {
                TensorShape X         = inputShapes[0];
                int         rank      = inputRanks[0];
                var         nchwShape = ShapeToOnnxLayout(X, rank);
                int         depth     = layer.pool[0];
                nchwShape.Add(depth);

                for (int i = 0; i < 4 - rank - 1; i++)
                {
                    nchwShape.Add(1);
                }

                return(new TensorShape(nchwShape[0], nchwShape[1], nchwShape[2], nchwShape[3]));
            }

            case Layer.Type.LSTM:
            {
                TensorShape X         = inputShapes[0];
                var         nchwShape = new List <int> {
                    X.batch, X.height, X.width, X.channels
                };
                int hiddenSize = layer.pool[0];

                // The first output, Y, is rank 4; Other outputs are handled as identity layers
                return(new TensorShape(nchwShape[0], 1, nchwShape[1], hiddenSize));
            }

            case Layer.Type.Flatten:
            {
                TensorShape X = inputShapes[0];
                return(X.Flatten());
            }

            case Layer.Type.Tile:
            {
                if (inputShapes.Length > 1)
                {
                    return(null);
                }

                var inputShape = ShapeToOnnxLayout(inputShapes[0], inputRanks[0]);
                var scale      = layer.pool.ToArray();
                Assert.IsNotNull(scale);
                Assert.AreEqual(scale.Length, inputShape.Count);

                for (int i = 0; i < scale.Length; i++)
                {
                    scale[i] *= inputShape[i];
                }

                return(OnnxLayoutToTensorShape(scale));
            }

            case Layer.Type.ConstantOfShape:
            {
                if (layer.axis == 1)
                {
                    return(inputShapes[0]);
                }

                if (inputShapes.Length == 1)
                {
                    return(null);
                }
                else
                {
                    return(OnnxLayoutToTensorShape(layer.pool));
                }
            }

            case Layer.Type.Reshape:
            {
                if (inputShapes.Length > 1)
                {
                    return(null);
                }

                // TODO shape to onnx shape given rank
                TensorShape X         = inputShapes[0];
                int         rank      = inputRanks[0];
                var         nchwShape = ShapeToOnnxLayout(X, rank);

                var unknownIndex = -1;
                var multipleOf   = 1;
                var size         = layer.pool.ToArray();
                for (var i = 0; i < size.Length; ++i)
                {
                    if (size[i] == 0)
                    {
                        size[i] = nchwShape[i];
                    }

                    if (size[i] < 0)
                    {
                        unknownIndex = i;
                    }
                    else
                    {
                        multipleOf *= size[i];
                    }
                }

                if (unknownIndex != -1)
                {
                    size[unknownIndex] = X.length / multipleOf;
                }

                return(OnnxLayoutToTensorShape(size));
            }

            case Layer.Type.Expand:
            {
                if (inputShapes.Length > 1)
                {
                    return(null);
                }

                var size       = layer.pool.ToList();
                var inputShape = ShapeToOnnxLayout(inputShapes[0], inputRanks[0]);

                int rankO = Math.Max(size.Count, inputShape.Count);
                for (int i = 0; i < rankO - size.Count; i++)
                {
                    size.Insert(0, 1);
                }
                for (int i = 0; i < rankO - inputShape.Count; i++)
                {
                    inputShape.Insert(0, 1);
                }

                var tiledShape = new int[rankO];
                for (int i = 0; i < rankO; i++)
                {
                    tiledShape[i] = Mathf.Max(size[i], inputShape[i]);
                }

                return(OnnxLayoutToTensorShape(tiledShape));
            }

            case Layer.Type.Concat:
            {
                var shape = ShapeToOnnxLayout(inputShapes[0], inputRanks[0]);
                var axis  = layer.axis;
                if (axis < 0)
                {
                    axis += inputRanks[0];
                }

                for (int i = 1; i < inputShapes.Length; i++)
                {
                    var shapei = ShapeToOnnxLayout(inputShapes[i], inputRanks[i]);
                    shape[axis] += shapei[axis];
                }

                return(OnnxLayoutToTensorShape(shape.ToArray()));
            }

            case Layer.Type.Gather:
            {
                var input0Shape = inputShapes[0];
                var input1Shape = inputShapes[1];


                int rank0    = inputRanks[0];
                int rank1    = inputRanks[1];
                var shape    = ShapeToOnnxLayout(input0Shape, rank0);
                var indicies = ShapeToOnnxLayout(input1Shape, rank1);

                var axis = layer.axis;
                if (axis < 0)
                {
                    axis += rank0;
                }

                shape.InsertRange(axis, indicies);

                return(OnnxLayoutToTensorShape(shape.ToArray()));
            }

            // elementwise operations
            case Layer.Type.Nop:
            case Layer.Type.ScaleBias:
            case Layer.Type.Normalization:
            case Layer.Type.LRN:
            case Layer.Type.Dropout:
            case Layer.Type.LogicalNot:
            case Layer.Type.Sign:
            case Layer.Type.Where:
            {
                // works in place, keeps the same shape size
                return(inputShapes[0]);
            }

            case Layer.Type.Activation:
            {
                TensorShape X = inputShapes[0];

                // LSTMs have multiple outputs, so deal with those separately
                if (layer.activation == Layer.Activation.None && layer.pad.Length > 0 &&
                    layer.name.IndexOf("lstm", StringComparison.OrdinalIgnoreCase) >= 0)
                {
                    int rank = layer.pad[0];
                    switch (rank)
                    {
                    case 4:
                        // Y
                        return(X);

                    case 3:
                        // Y_h, Y_c: seq_length is stripped off
                        return(new TensorShape(X[1], X[2], X[3]));
                    }
                }

                // works in place, keeps the same shape size
                return(X);
            }

            case Layer.Type.Shape:
            {
                TensorShape X    = inputShapes[0];
                int         rank = inputRanks[0];
                return(new TensorShape(rank));
            }

            case Layer.Type.Squeeze:
            {
                TensorShape X    = inputShapes[0];
                int         rank = inputRanks[0];

                var nchwShape = ShapeToOnnxLayout(X, rank);

                var squeezedShape = new List <int>();
                for (int i = 0; i < nchwShape.Count; i++)
                {
                    if (!layer.pool.Contains(i))
                    {
                        squeezedShape.Add(nchwShape[i]);
                    }
                }

                return(OnnxLayoutToTensorShape(squeezedShape.ToArray()));
            }

            case Layer.Type.Unsqueeze:
            {
                TensorShape X    = inputShapes[0];
                int         rank = inputRanks[0];

                if (rank < 0)
                {
                    return(null);
                }

                var nchwShape = ShapeToOnnxLayout(X, rank);

                if (rank == 0)
                {
                    return(new TensorShape(new int[] { 1, 1, 1, 1 }));
                }

                for (int a = 0; a < layer.pool.Length; a++)
                {
                    var axis = layer.pool[a];
                    if (axis < 0)
                    {
                        axis += rank;
                    }

                    nchwShape.Insert(axis, 1);
                    rank++;
                }

                return(OnnxLayoutToTensorShape(nchwShape.ToArray()));
            }

            case Layer.Type.StridedSlice:
            {
                if (inputShapes.Length > 1)
                {
                    return(null);
                }

                TensorShape X         = inputShapes[0];
                int         rank      = inputRanks[0];
                var         nchwShape = ShapeToOnnxLayout(X, rank);

                var starts = layer.pad.ToArray();
                var ends   = layer.pool.ToArray();
                var steps  = layer.stride.ToArray();
                var axes   = layer.axes.ToArray();

                var onnxStarts = Enumerable.Repeat(0, rank).ToArray();
                var onnxEnds   = Enumerable.Repeat(int.MaxValue, rank).ToArray();   // by default copy the whole axis till the end
                var onnxSteps  = Enumerable.Repeat(1, rank).ToArray();

                // NOTE: begin=0, end=0, stride=1  <=  full range from existing axis
                //       begin=0, end=inf,stride=1 <=  full range from existing axis
                //       begin=0, end=X, stride=1  <=  full range from existing axis, if X==last element on this axis
                //       begin=0, end=0, stride=0  <=  new axis OR shrink axis to single 1st element
                //       begin=N, end=N, stride=0  <=              shrink axis to single Nth element
                // These notes are copied from TensorExtensions.ApplyStridedSlice(...)

                for (int i = 0; i < axes.Length; ++i)
                {
                    var axis = axes[i];
                    if (axis < 0)
                    {
                        axis += rank;
                    }
                    axis = Math.Min(Math.Max(axis, 0), rank);

                    onnxStarts[axis] = starts[i];
                    onnxEnds[axis]   = ends[i];
                    onnxSteps[axis]  = steps[i];
                }

                var sliced = new int[rank];
                for (int i = 0; i < rank; ++i)
                {
                    // NOTE: begin=0, end=0, stride=1  <=  full range from the existing axis
                    //       begin=0, end=X, stride=1  <=  full range from the existing axis, if X==last element on this axis
                    //       begin=0, end=0, stride=0  <=  new axis OR shrink axis to a single 1st element
                    //       begin=N, end=N, stride=0  <=              shrink axis to a single Nth element
                    int ei = TensorExtensions.WrapIndex(onnxEnds[i], nchwShape[i]);
                    int si = TensorExtensions.WrapIndex(onnxStarts[i], nchwShape[i]);

                    if (onnxSteps[i] > 0)
                    {
                        sliced[i] = (int)Mathf.Round((float)(Math.Min(ei, nchwShape[i]) - Math.Min(si, nchwShape[i] - 1)) / (float)(Mathf.Abs(onnxSteps[i])));
                    }
                    else
                    {
                        bool inclusive = onnxEnds[i] < -nchwShape[i];     // edge case when ends is negative and bigger than nchwShape
                        sliced[i] = (int)Mathf.Round((float)(Math.Min(si, nchwShape[i] - 1) - Math.Min(ei, nchwShape[i]) + (inclusive ? 1 : 0)) / (float)(Mathf.Abs(onnxSteps[i])));
                    }
                }

                return(OnnxLayoutToTensorShape(sliced.ToArray()));
            }

            default:
                throw new NotImplementedException("InferOutputShapeNCHW: Unhandled layer: " + layer.ToString());
            }
        }
コード例 #5
0
        void Rewrite(ref Model model)
        {
            IRShapeInferenceHelper.RankInference.ListTemporaryTensorRanks(model, out m_RanksByName);
            var inputShapes = new Dictionary <string, TensorShape>();

            foreach (var i in model.inputs)
            {
                if (!ModelAnalyzer.IsInputShapeAcceptablyKnowForShapeInference(i))
                {
                    continue;
                }
                inputShapes.Add(i.name, new TensorShape(i.shape));
            }

            IRShapeInferenceHelper.ShapeInference.ListTemporaryTensorShapesNCHW(model, inputShapes, ref m_RanksByName, out m_ShapesByName);

            var nhwc = model.ShallowCopy();

            nhwc.layers.Clear();
            nhwc.layout = "NHWC";

            // TF2ONNX transpose pattern -> part of the model are in NHWC and not NCHW
            // * identify those
            // * transpose inputs to NCHW
            // * remove layout transposes
            // * convert axis/constants accordingly
            LayoutTransposeRemovalHelper transposeRemoval = new LayoutTransposeRemovalHelper();

            m_isModelExportedFromNHWC = transposeRemoval.InferAllLayersChannelOrder(model, out m_layersChannelOrder);

            if (m_isModelExportedFromNHWC && !transposeRemoval.IsImporterLikelyNHWCLayout(model.ProducerName))
            {
                nhwc.Warnings.Add(new Model.ImporterWarning("model", "model detected as NCHW, but not natively in this layout, behavior might be erroneous"));
            }

            // remove layout change transposes
            if (m_isModelExportedFromNHWC)
            {
                transposeRemoval.RemoveAllChannelLayoutTransposes(ref model, m_layersChannelOrder);
            }

            var modelBuilder = new ModelBuilder(nhwc);

            for (int i = 0; i < nhwc.inputs.Count; i++)
            {
                Model.Input input = nhwc.inputs[i];

                int[] shape            = input.shape;
                var   tensorShape      = new TensorShape(shape);
                int[] rankPermutations = GetChannelsLastPermutationsFromRank(input.rank);
                int[] permutations     = tensorShape.Get8DPermutationsForNCHWPermutationsAndShape(rankPermutations);

                // Preserve symbolic shape by operating on int array instead of TensorShape, which would resolve unknown dimensions
                if (m_isModelExportedFromNHWC) // transpose input shape if importer preserved NHWC layout
                {
                    if (m_layersChannelOrder[input.name] == LayoutTransposeRemovalHelper.ChannelsOrder.NCHW)
                    {
                        input.shape = TensorExtensions.Permute(shape, permutations);
                    }
                    else
                    {
                        var onnxShape = new List <int> {
                            shape[2], shape[5], shape[6], shape[7]
                        };
                        onnxShape.RemoveRange(input.rank, 4 - input.rank);
                        input.shape = IRShapeInferenceHelper.ShapeInference.BarracudaLayoutToTensorShapeLayout(onnxShape.ToArray());
                    }
                }
                else
                {
                    input.shape = TensorExtensions.Permute(shape, permutations);
                }
                nhwc.inputs[i] = input;
            }

            // NCHW -> Barracuda NHWC rewriter (some layer need to insert aditional layers to be Barracuda compatible)
            var rewriters = InstantiateRewriterNCHWToNHWC();
            // NHWC -> Barracuda NHWC rewriter (axis and constant padding padding)
            var rewritersNHWC = InstantiateRewriterNHWCToNHWC();


            foreach (var l in model.layers)
            {
                // Some nodes output multiple layers (e.g. LSTM), so don't process or include those layers
                if (nhwc.layers.Exists(alreadyOutputLayer => alreadyOutputLayer.name == l.name))
                {
                    continue;
                }

                if (m_layersChannelOrder.TryGetValue(l.name, out LayoutTransposeRemovalHelper.ChannelsOrder layerChannelOrder))
                {
                    if (m_isModelExportedFromNHWC && (layerChannelOrder == LayoutTransposeRemovalHelper.ChannelsOrder.NHWC))
                    {
                        if (!rewritersNHWC.TryGetValue(l.type, out Func <Layer, ModelBuilder, bool> rwNCHW) || rwNCHW(l, modelBuilder))
                        {
                            nhwc.layers.Add(l);
                        }
                        continue;
                    }
                }

                if (!rewriters.TryGetValue(l.type, out Func <Layer, ModelBuilder, bool> rw) || rw(l, modelBuilder))
                {
                    // Either no re-write was needed or the layer was not replaced
                    nhwc.layers.Add(l);
                }
            }

            // We need to correct constants to have broadcast work correctly
            // ONNX: 1,64,32 + c:32
            // Barracuda: 1,_32,64 + c:_,_,32,64 and not c:32,_,_,_
            // X:5,7 + c: 6,9,5,7 = 6,9,5,7
            // X: 5,_,_,7 + c: 6,5,7,9 = ???
            CorrectConstantsForBroadCast(ref nhwc);
            CorrectDynamicInputsForBroadCast(ref nhwc);

            // for NHWC importers, perform slightly more aggressive output shape check
            // => add transposes to match onnx layout
            if (transposeRemoval.IsImporterLikelyNHWCLayout(model.ProducerName))
            {
                CorrectOutputLayoutToMatchNHWCLayout(ref nhwc);
            }

            model = nhwc;
        }
コード例 #6
0
        void ConcatenateTransposes(ref Model model)
        {
            var remap = new Dictionary<string, string>();

            var layerReferences = new Dictionary<string, int>();
            for (int l = 0; l < model.layers.Count; ++l)
            {
                Layer layer = model.layers[l];
                string[] layerInputs = layer.inputs;

                for (int i = 0; i < layerInputs.Length; i++)
                {
                    if (layerReferences.TryGetValue(layerInputs[i], out int count))
                        count++;
                    else
                        count = 0;

                    layerReferences[layerInputs[i]] = count;
                }

                if (model.outputs.Contains(layer.name))
                {
                    if (layerReferences.TryGetValue(layer.name, out int count))
                        count++;
                    else
                        count = 0;
                    layerReferences[layer.name] = count;
                }
            }

            for (int l = 0; l < model.layers.Count - 1; ++l)
            {
                var layer = model.layers[l];
                var nextLayer = model.layers[l + 1];

                if (remap.ContainsKey(layer.name)) // This layer will get removed
                    continue;

                string[] layerInputs = layer.inputs;
                for (int i = 0; i < layerInputs.Length; i++)
                {
                    if (remap.TryGetValue(layerInputs[i], out string replacement))
                        layerInputs[i] = replacement;
                }

                if (layer.flags.HasFlag(Layer.Flags.Preserve))
                    continue;

                bool reverseMerge = nextLayer.flags.HasFlag(Layer.Flags.Preserve);

                // Only concatenate serial transpose layers
                if (layer.type == Layer.Type.Transpose
                    && nextLayer.type == Layer.Type.Transpose
                    && nextLayer.inputs.Contains(layer.name)
                    && layerReferences.TryGetValue(layer.name, out int references)
                    && references <= 1
                    && layerReferences.TryGetValue(nextLayer.name, out references)
                    && references <= 1)
                {
                    int[] permutations = new int[] { 0, 1, 2, 3, 4, 5, 6, 7 };
                    if (layer.pool.Length == 4)
                    {
                        permutations[2] = TensorExtensions.Convert4DTo8DAxis(layer.pool[0]);
                        permutations[5] = TensorExtensions.Convert4DTo8DAxis(layer.pool[1]);
                        permutations[6] = TensorExtensions.Convert4DTo8DAxis(layer.pool[2]);
                        permutations[7] = TensorExtensions.Convert4DTo8DAxis(layer.pool[3]);
                    }
                    else
                    {
                        permutations[0] = layer.pool[0];
                        permutations[1] = layer.pool[1];
                        permutations[2] = layer.pool[2];
                        permutations[3] = layer.pool[3];
                        permutations[4] = layer.pool[4];
                        permutations[5] = layer.pool[5];
                        permutations[6] = layer.pool[6];
                        permutations[7] = layer.pool[7];
                    }

                    int[] combinePermutations = new int[] { 0, 1, 2, 3, 4, 5, 6, 7 };
                    if (nextLayer.pool.Length == 4)
                    {
                        combinePermutations[2] = TensorExtensions.Convert4DTo8DAxis(nextLayer.pool[0]);
                        combinePermutations[5] = TensorExtensions.Convert4DTo8DAxis(nextLayer.pool[1]);
                        combinePermutations[6] = TensorExtensions.Convert4DTo8DAxis(nextLayer.pool[2]);
                        combinePermutations[7] = TensorExtensions.Convert4DTo8DAxis(nextLayer.pool[3]);
                    }
                    else
                    {
                        combinePermutations[0] = nextLayer.pool[0];
                        combinePermutations[1] = nextLayer.pool[1];
                        combinePermutations[2] = nextLayer.pool[2];
                        combinePermutations[3] = nextLayer.pool[3];
                        combinePermutations[4] = nextLayer.pool[4];
                        combinePermutations[5] = nextLayer.pool[5];
                        combinePermutations[6] = nextLayer.pool[6];
                        combinePermutations[7] = nextLayer.pool[7];
                    }

                    permutations = TensorExtensions.Permute(permutations, combinePermutations);

                    if (reverseMerge)
                    {
                        remap[layer.name] = nextLayer.name;
                        nextLayer.pool = permutations;
                        nextLayer.inputs = layer.inputs.ToArray();
                    }
                    else
                    {
                        layer.pool = permutations;
                        remap[nextLayer.name] = layer.name;
                    }
                }
            }

            var removeLayers = remap.Keys;
            model.layers.RemoveAll(l => removeLayers.Contains(l.name));
        }
        void ConcatenateTransposes(ref Model model)
        {
            var remap = new Dictionary <string, string>();

            var layerReferences = new Dictionary <string, int>();

            for (int l = 0; l < model.layers.Count - 1; ++l)
            {
                Layer    layer       = model.layers[l];
                string[] layerInputs = layer.inputs;

                for (int i = 0; i < layerInputs.Length; i++)
                {
                    if (layerReferences.TryGetValue(layerInputs[i], out int count))
                    {
                        count++;
                    }
                    else
                    {
                        count = 0;
                    }

                    layerReferences[layerInputs[i]] = count;
                }
            }

            for (int l = 0; l < model.layers.Count - 1; ++l)
            {
                var layer     = model.layers[l];
                var nextLayer = model.layers[l + 1];

                if (layer.flags.HasFlag(Layer.Flags.Preserve))
                {
                    continue;
                }

                if (remap.ContainsKey(layer.name)) // This layer will get removed
                {
                    continue;
                }

                string[] layerInputs = layer.inputs;
                for (int i = 0; i < layerInputs.Length; i++)
                {
                    if (remap.TryGetValue(layerInputs[i], out string replacement))
                    {
                        layerInputs[i] = replacement;
                    }
                }

                // Only concatenate serial transpose layers
                if (layer.type == Layer.Type.Transpose &&
                    nextLayer.type == Layer.Type.Transpose &&
                    nextLayer.inputs.Contains(layer.name) &&
                    layerReferences.TryGetValue(layer.name, out int references) &&
                    references <= 1 &&
                    layerReferences.TryGetValue(nextLayer.name, out references) &&
                    references <= 1)
                {
                    int[] permutations        = layer.pool;
                    int[] combinePermutations = nextLayer.pool;

                    permutations = TensorExtensions.Permute(permutations, combinePermutations);
                    layer.pool   = permutations;

                    remap[nextLayer.name] = layer.name;
                }
            }

            var removeLayers = remap.Keys;

            model.layers.RemoveAll(l => removeLayers.Contains(l.name));
        }
        Dictionary <Layer.Type, Func <Layer, ModelBuilder, bool> > InstantiateRewriterNCHWToNHWC()
        {
            var rewriters = new Dictionary <Layer.Type, Func <Layer, ModelBuilder, bool> >();

            // return true if layer should be included in rewritten model, false if it was replaced
            rewriters.Add(Layer.Type.Load, ConvertDatasets);
            rewriters.Add(Layer.Type.Reshape, (layer, net) =>
            {
                // TODO reshape with pool as constant
                string input0 = layer.inputs[0];
                if (!m_RanksByName.TryGetValue(input0, out int?input0Rank) || !input0Rank.HasValue)
                {
                    throw new Exception($"Must have input rank for {input0} in order to convert Reshape to NHWC");
                }

                int outputRank = 4;
                Layer nchwTranspose;
                // TODO cleanup?
                if (input0Rank.Value == 1)
                {
                    nchwTranspose = net.Identity($"Transpose_{input0}_For_{layer.name}", input0);
                }
                else if (input0Rank.Value == 2)
                {
                    nchwTranspose = net.Transpose($"Transpose_{input0}_For_{layer.name}", input0, k_FromNHWCtoNCHW);
                }
                else if (input0Rank.Value == 3)
                {
                    nchwTranspose = net.Transpose($"Transpose_{input0}_For_{layer.name}", input0, k_FromN1WCtoNCH);
                }
                else if (input0Rank.Value == 4)
                {
                    nchwTranspose = net.Transpose($"Transpose_{input0}_For_{layer.name}", input0, k_FromNHWCtoNCHW);
                }
                else if (input0Rank.Value == 5)
                {
                    nchwTranspose = net.Transpose($"Transpose_{input0}_For_{layer.name}", input0, new[] { 0, 1, 2, 3, 7, 4, 5, 6 });
                }
                else
                {
                    // TODO 8D?
                    nchwTranspose = net.Transpose($"Transpose_{input0}_For_{layer.name}", input0, new[] { 0, 1, 2, 7, 3, 4, 5, 6 });
                }

                Layer reshape = null;
                if (layer.inputs.Length > 1)
                {
                    string input1 = layer.inputs[1];
                    if (!m_RanksByName.TryGetValue(input1, out int?input1Rank) || !input1Rank.HasValue)
                    {
                        throw new Exception($"Must have input rank for {input1} in order to convert Reshape to NHWC");
                    }

                    if (input1Rank.Value == 1) // shape is in the tensor
                    {
                        if (!m_ShapesByName.TryGetValue(input1, out TensorShape? input1Shape) || !input1Shape.HasValue)
                        {
                            throw new Exception($"Must have input shape for {input1} in order to convert Reshape to NHWC");
                        }

                        outputRank = input1Shape.Value[TensorShape.DataBatch];
                    }

                    reshape = net.Reshape($"{layer.name}_NCHW", nchwTranspose, input1);
                }
                else if (layer.pool.Length > 0)
                {
                    outputRank = layer.pool.Length;

                    var shape = IRShapeInferenceHelper.ShapeInference.OnnxLayoutToTensorShapeLayout(layer.pool);

                    reshape = net.Reshape($"{layer.name}_NCHW", nchwTranspose, shape);
                }

                // TODO cleanup?
                if (outputRank == 1)
                {
                    nchwTranspose = net.Identity(layer.name, reshape);
                }
                else if (outputRank == 2)
                {
                    nchwTranspose = net.Transpose(layer.name, reshape, k_FromNCHWtoNHWC);
                }
                else if (outputRank == 3)
                {
                    net.Transpose(layer.name, reshape, k_FromNCHtoN1WC);
                }
                else if (outputRank == 4)
                {
                    net.Transpose(layer.name, reshape, k_FromNCHWtoNHWC);
                }
                else if (outputRank == 5)
                {
                    net.Transpose(layer.name, reshape, new[] { 0, 1, 2, 3, 5, 6, 7, 4 });
                }
                else
                {
                    // TODO 8D?
                    net.Transpose(layer.name, reshape, new[] { 0, 1, 2, 4, 5, 6, 7, 3 });
                }

                return(false);
            });
            rewriters.Add(Layer.Type.Expand, ConvertShape);
            rewriters.Add(Layer.Type.Shape, (layer, net) =>
            {
                if (layer.axis >= 0)
                {
                    ConvertAxis(layer, net);
                }

                return(true);
            });
            rewriters.Add(Layer.Type.Transpose, (layer, net) =>
            {
                int[] permutations = layer.pool;

                int rank            = layer.pool.Length;
                int[] onnxTranspose = layer.pool;

                // TODO cleanup?
                switch (rank)
                {
                case 2:
                    {
                        // onnx : 5,7 => 5,7 / 7,5
                        // barracuda : 5,_,_,7 => 5,_,_,7 / 7,_,_,5
                        layer.pool    = new[] { 0, 1, 2, 3 };
                        layer.pool[0] = onnxTranspose[0] == 1 ? 3 : onnxTranspose[0];
                        layer.pool[3] = onnxTranspose[1] == 1 ? 3 : onnxTranspose[1];
                        return(true);
                    }

                case 3:
                    {
                        // onnx : 5,7,3 => 5,7,3 / 7,5,3 / 7,3,5 ...
                        // barracuda : 5,_,7,3 => 7,_,3,5 / 7,_,5,3 ...
                        layer.pool    = new[] { 0, 1, 2, 3 };
                        layer.pool[0] = onnxTranspose[0] == 1 ? 3 : onnxTranspose[0] == 2 ? 2 : onnxTranspose[0];
                        layer.pool[3] = onnxTranspose[1] == 1 ? 3 : onnxTranspose[1] == 2 ? 2 : onnxTranspose[1];
                        layer.pool[2] = onnxTranspose[2] == 1 ? 3 : onnxTranspose[2] == 2 ? 2 : onnxTranspose[2];
                        return(true);
                    }

                case 4:
                    {
                        layer.pool    = new[] { 0, 1, 2, 3 };
                        layer.pool[0] = onnxTranspose[0] == 1 ? 3 : onnxTranspose[0] == 2 ? 1 : onnxTranspose[0] == 3 ? 2 : onnxTranspose[0];
                        layer.pool[3] = onnxTranspose[1] == 1 ? 3 : onnxTranspose[1] == 2 ? 1 : onnxTranspose[1] == 3 ? 2 : onnxTranspose[1];
                        layer.pool[1] = onnxTranspose[2] == 1 ? 3 : onnxTranspose[2] == 2 ? 1 : onnxTranspose[2] == 3 ? 2 : onnxTranspose[2];
                        layer.pool[2] = onnxTranspose[3] == 1 ? 3 : onnxTranspose[3] == 2 ? 1 : onnxTranspose[3] == 3 ? 2 : onnxTranspose[3];
                        return(true);
                    }

                case 5:
                    {
                        // onnx : 5,7,3,4,9 => 5,9,4,7,3 / 3,9,4,7,5 ...
                        layer.pool = new[] { 0, 1, 2, 3, 4, 5, 6, 7 };
                        //  [1,1,N,1,D,H,W,C]

                        layer.pool[2] = onnxTranspose[0] == 0 ? 2 : onnxTranspose[0] == 1 ? 7 : onnxTranspose[0] + 2;
                        layer.pool[7] = onnxTranspose[1] == 0 ? 2 : onnxTranspose[1] == 1 ? 7 : onnxTranspose[1] + 2;
                        layer.pool[4] = onnxTranspose[2] == 0 ? 2 : onnxTranspose[2] == 1 ? 7 : onnxTranspose[2] + 2;
                        layer.pool[5] = onnxTranspose[3] == 0 ? 2 : onnxTranspose[3] == 1 ? 7 : onnxTranspose[3] + 2;
                        layer.pool[6] = onnxTranspose[4] == 0 ? 2 : onnxTranspose[4] == 1 ? 7 : onnxTranspose[4] + 2;

                        return(true);
                    }

                default:
                    {
                        // TODO 8D?
                        layer.pool = new[] { 0, 1, 2, 3, 4, 5, 6, 7 };
                        // NCTDHW

                        layer.pool[2] = onnxTranspose[0] == 0 ? 2 : onnxTranspose[0] == 1 ? 7 : onnxTranspose[0] + 1;
                        layer.pool[7] = onnxTranspose[1] == 0 ? 2 : onnxTranspose[1] == 1 ? 7 : onnxTranspose[1] + 1;
                        layer.pool[3] = onnxTranspose[2] == 0 ? 2 : onnxTranspose[2] == 1 ? 7 : onnxTranspose[2] + 1;
                        layer.pool[4] = onnxTranspose[3] == 0 ? 2 : onnxTranspose[3] == 1 ? 7 : onnxTranspose[3] + 1;
                        layer.pool[5] = onnxTranspose[4] == 0 ? 2 : onnxTranspose[4] == 1 ? 7 : onnxTranspose[4] + 1;
                        layer.pool[6] = onnxTranspose[5] == 0 ? 2 : onnxTranspose[5] == 1 ? 7 : onnxTranspose[5] + 1;

                        return(true);
                    }
                }
            });
            rewriters.Add(Layer.Type.Unsqueeze, (layer, net) =>
            {
                // Replace w/ a Transpose since Barracuda tensors are full rank (i.e. grab an unused dimension)
                string input0 = layer.inputs[0];
                if (!m_RanksByName.TryGetValue(input0, out int?input0Rank) || !input0Rank.HasValue)
                {
                    throw new Exception($"Must have input rank for {input0} in order to convert axis for Unsqueeze");
                }

                var axis = layer.pool[0];
                if (axis < 0)
                {
                    axis = input0Rank.Value + 1 - axis;
                }

                var transpose = UnSqueezeAxisPermutationForMappingNCHWLayoutToBarracuda(input0Rank.Value, axis);
                net.Transpose(layer.name, input0, transpose);

                return(false);
            });
            rewriters.Add(Layer.Type.Squeeze, (layer, net) =>
            {
                // Replace w/ a Transpose since Barracuda tensors are full rank
                string input0 = layer.inputs[0];
                if (!m_RanksByName.TryGetValue(input0, out int?input0Rank) || !input0Rank.HasValue)
                {
                    throw new Exception($"Must have input rank for {input0} in order to convert axis for Squeeze");
                }

                var axis = layer.pool[0];
                if (axis < 0)
                {
                    axis = input0Rank.Value + 1 - axis;
                }

                var transpose = SqueezeAxisPermutationForMappingNCHWLayoutToBarracuda(input0Rank.Value, axis);
                net.Transpose(layer.name, input0, transpose);

                return(false);
            });
            rewriters.Add(Layer.Type.Flatten, (layer, net) =>
            {
                string input0 = layer.inputs[0];
                if (!m_RanksByName.TryGetValue(input0, out int?input0Rank) || !input0Rank.HasValue)
                {
                    throw new Exception($"Must have input rank for {input0} in order to convert Flatten to NHWC");
                }

                Layer nchwTranspose = net.Transpose($"Transpose_{input0}_For_{layer.name}", input0, input0Rank.Value == 3 ? k_FromN1WCtoNCH : k_FromNHWCtoNCHW);
                net.Flatten(layer.name, nchwTranspose);
                // No need to transpose back b/c final shape is always NC (rank 2)

                return(false);
            });
            rewriters.Add(Layer.Type.Concat, ConvertAxis);
            rewriters.Add(Layer.Type.StridedSlice, (layer, net) =>
            {
                int rank = 4;
                if (m_RanksByName.ContainsKey(layer.name) && m_RanksByName[layer.name] != null)
                {
                    rank = m_RanksByName[layer.name].Value;
                }

                var name = layer.name;

                var starts = layer.pad;
                var ends   = layer.pool;
                var steps  = layer.stride;
                var axes   = layer.axes;

                var onnxStarts = Enumerable.Repeat(0, rank).ToArray();
                var onnxEnds   = Enumerable.Repeat(int.MaxValue, rank).ToArray(); // by default copy the whole axis till the end
                var onnxSteps  = Enumerable.Repeat(1, rank).ToArray();

                // NOTE: begin=0, end=0, stride=1  <=  full range from existing axis
                //       begin=0, end=inf,stride=1 <=  full range from existing axis
                //       begin=0, end=X, stride=1  <=  full range from existing axis, if X==last element on this axis
                //       begin=0, end=0, stride=0  <=  new axis OR shrink axis to single 1st element
                //       begin=N, end=N, stride=0  <=              shrink axis to single Nth element
                // These notes are copied from TensorExtensions.ApplyStridedSlice(...)

                for (int i = 0; i < axes.Length; ++i)
                {
                    var axis = axes[i];
                    if (axis < 0)
                    {
                        axis += rank;
                    }
                    axis = Math.Min(Math.Max(axis, 0), rank);

                    onnxStarts[axis] = starts[i];
                    onnxEnds[axis]   = ends[i];
                    onnxSteps[axis]  = steps[i];
                }

                layer.pad    = PermuteToBarracuda(onnxStarts, rank, 0);
                layer.pool   = PermuteToBarracuda(onnxEnds, rank, int.MaxValue);
                layer.stride = PermuteToBarracuda(onnxSteps, rank, 1);

                return(true);
            });
            rewriters.Add(Layer.Type.Tile, (layer, net) =>
            {
                if (layer.inputs.Length == 1)
                {
                    layer.pool = TensorExtensions.Permute(layer.pool, k_FromNCHWtoNHWC);
                }

                return(true);
            });
            rewriters.Add(Layer.Type.Activation, ConvertActivation);
            rewriters.Add(Layer.Type.Gather, ConvertAxis);
            rewriters.Add(Layer.Type.TopKIndices, ConvertAxis);
            rewriters.Add(Layer.Type.TopKValues, ConvertAxis);
            rewriters.Add(Layer.Type.LSTM, (layer, net) => ExpandOpsPass.ConvertLSTM(layer, net, m_Ops));

            rewriters.Add(Layer.Type.RandomNormal, ConvertNormal);
            rewriters.Add(Layer.Type.RandomUniform, ConvertNormal);

            rewriters.Add(Layer.Type.ReduceMax, Reduce);
            rewriters.Add(Layer.Type.ReduceMean, Reduce);
            rewriters.Add(Layer.Type.ReduceMin, Reduce);
            rewriters.Add(Layer.Type.ReduceProd, Reduce);
            rewriters.Add(Layer.Type.ReduceSum, Reduce);

            rewriters.Add(Layer.Type.ArgMax, Reduce);
            rewriters.Add(Layer.Type.ArgMin, Reduce);

            rewriters.Add(Layer.Type.Upsample2D, Upsample);
            rewriters.Add(Layer.Type.Resample2D, Upsample);
            rewriters.Add(Layer.Type.Upsample3D, Upsample);

            rewriters.Add(Layer.Type.MatMul, (layer, net) =>
            {
                string input0 = layer.inputs[0];
                if (!m_RanksByName.TryGetValue(input0, out int?input0Rank) || !input0Rank.HasValue)
                {
                    throw new Exception($"Must have input rank for {input0} in order to convert axis for NHWC op");
                }

                string input1 = layer.inputs[1];
                if (!m_RanksByName.TryGetValue(input1, out int?input1Rank) || !input1Rank.HasValue)
                {
                    throw new Exception($"Must have input rank for {input1} in order to convert axis for NHWC op");
                }

                layer.pool = new[] { input0Rank.Value, input1Rank.Value };

                return(true);
            });


            return(rewriters);
        }
コード例 #9
0
        Dictionary <Layer.Type, Func <Layer, ModelBuilder, bool> > InstantiateRewriterNHWCToNHWC()
        {
            var rewritersNHWC = new Dictionary <Layer.Type, Func <Layer, ModelBuilder, bool> >();

            // TODO, upsample is sometimes in NHWC mode
            rewritersNHWC.Add(Layer.Type.Reshape, (layer, net) =>
            {
                if (layer.inputs.Length == 1)
                {
                    var size = layer.pool;

                    // Don't use Tensorshape as this can remove a wild card
                    const int _ = 1;
                    if (size.Length == 1)
                    {
                        layer.pool = new[] { _, _, size[0], _, _, 1, 1, 1 }
                    }
                    ;                                                        // [1,1,N,1,1,1,1,1]
                    else if (size.Length == 2)
                    {
                        layer.pool = new[] { _, _, size[0], _, _, 1, 1, size[1] }
                    }
                    ;                                                              // [1, 1, N, 1, 1, 1, 1, C]
                    else if (size.Length == 3)
                    {
                        layer.pool = new[] { _, _, size[0], _, _, _, size[1], size[2] }
                    }
                    ;                                                                    // [1,1,N,1,1,1,W,C]
                    else if (size.Length == 4)
                    {
                        layer.pool = new[] { _, _, size[0], _, _, size[1], size[2], size[3] }
                    }
                    ;                                                                          // [1,1,N,1,1,H,W,C]
                    else if (size.Length == 5)
                    {
                        layer.pool = new[] { _, _, size[0], _, size[1], size[2], size[3], size[4] }
                    }
                    ;                                                                                // [1,1,N,1,D,H,W,C]
                    else if (size.Length == 6)
                    {
                        layer.pool = new[] { _, _, size[0], size[1], size[2], size[3], size[4], size[5] }
                    }
                    ;                                                                                      // [1,1,N,T,D,H,W,C]
                    else
                    {
                        layer.pool = new[] { size[0], size[1], size[2], size[3], size[4], size[5], size[6], size[7] }
                    };                                                                                                 // [S,R,N,T,D,H,W,C]
                }
                return(true);
            });
            rewritersNHWC.Add(Layer.Type.Transpose, (layer, net) =>
            {
                var size = layer.pool;
                if (size.Length == 1)
                {
                    layer.pool    = new[] { 0, 1, 2, 3 }; // [N,_,_,_]
                    layer.pool[0] = size[0];
                }
                else if (size.Length == 2)
                {
                    layer.pool    = new[] { 0, 1, 2, 3 }; // [N, _, _, C]
                    layer.pool[0] = size[0] == 0 ? 0 : size[0] + 2;
                    layer.pool[3] = size[1] == 0 ? 0 : size[1] + 2;
                }
                else if (size.Length == 3)
                {
                    layer.pool    = new[] { 0, 1, 2, 3 }; // [N, _, W, C]
                    layer.pool[0] = size[0] == 0 ? 0 : size[0] + 1;
                    layer.pool[2] = size[1] == 0 ? 0 : size[1] + 1;
                    layer.pool[3] = size[2] == 0 ? 0 : size[2] + 1;
                }
                else if (size.Length == 4)
                {
                    layer.pool = size; // [N,H,W,C]
                }
                else if (size.Length == 5)
                {
                    layer.pool    = new[] { 0, 1, 2, 3, 4, 5, 6, 7 }; // [_,_,N,_,D,H,W,C]
                    layer.pool[2] = size[0] == 0 ? 2 : size[0] + 3;
                    layer.pool[4] = size[1] == 0 ? 2 : size[1] + 3;
                    layer.pool[5] = size[2] == 0 ? 2 : size[2] + 3;
                    layer.pool[6] = size[3] == 0 ? 2 : size[3] + 3;
                    layer.pool[7] = size[4] == 0 ? 2 : size[4] + 3;
                }
                else if (size.Length == 6)
                {
                    layer.pool    = new[] { 0, 1, 2, 3, 4, 5, 6, 7 }; // [1,1,N,T,D,H,W,C]
                    layer.pool[2] = size[0] + 2;
                    layer.pool[3] = size[1] + 2;
                    layer.pool[4] = size[2] + 2;
                    layer.pool[5] = size[3] + 2;
                    layer.pool[6] = size[4] + 2;
                    layer.pool[7] = size[5] + 2;
                }
                else
                {
                    layer.pool = new[] { size[0], size[1], size[2], size[3], size[4], size[5], size[6], size[7] }
                };                                                                                                 // [S,R,N,T,D,H,W,C]
                return(true);
            });
            rewritersNHWC.Add(Layer.Type.Gather, ConvertGatherNHWC);
            rewritersNHWC.Add(Layer.Type.Concat, ConvertAxisNHWC);
            rewritersNHWC.Add(Layer.Type.ReduceMax, ConvertAxisNHWC);
            rewritersNHWC.Add(Layer.Type.ReduceMean, ConvertAxisNHWC);
            rewritersNHWC.Add(Layer.Type.ReduceMin, ConvertAxisNHWC);
            rewritersNHWC.Add(Layer.Type.ReduceProd, ConvertAxisNHWC);
            rewritersNHWC.Add(Layer.Type.ReduceSum, ConvertAxisNHWC);
            rewritersNHWC.Add(Layer.Type.ArgMax, ConvertAxisNHWC);
            rewritersNHWC.Add(Layer.Type.ArgMin, ConvertAxisNHWC);
            rewritersNHWC.Add(Layer.Type.Activation, ConvertAxisNHWC);
            rewritersNHWC.Add(Layer.Type.StridedSlice, (layer, net) =>
            {
                int rank = 4;
                if (m_RanksByName.ContainsKey(layer.name) && m_RanksByName[layer.name] != null)
                {
                    rank = m_RanksByName[layer.name].Value;
                }

                var name = layer.name;

                var starts = layer.pad;
                var ends   = layer.pool;
                var steps  = layer.stride;
                var axes   = layer.axes;

                var onnxStarts = Enumerable.Repeat(0, rank).ToArray();
                var onnxEnds   = Enumerable.Repeat(int.MaxValue, rank).ToArray(); // by default copy the whole axis till the end
                var onnxSteps  = Enumerable.Repeat(1, rank).ToArray();

                // NOTE: begin=0, end=0, stride=1  <=  full range from existing axis
                //       begin=0, end=inf,stride=1 <=  full range from existing axis
                //       begin=0, end=X, stride=1  <=  full range from existing axis, if X==last element on this axis
                //       begin=0, end=0, stride=0  <=  new axis OR shrink axis to single 1st element
                //       begin=N, end=N, stride=0  <=              shrink axis to single Nth element
                // These notes are copied from TensorExtensions.ApplyStridedSlice(...)

                for (int i = 0; i < axes.Length; ++i)
                {
                    var axis = axes[i];
                    if (axis < 0)
                    {
                        axis += rank;
                    }
                    axis = Math.Min(Math.Max(axis, 0), rank);

                    onnxStarts[axis] = starts[i];
                    onnxEnds[axis]   = ends[i];
                    onnxSteps[axis]  = steps[i];
                }

                switch (rank)
                {
                case 1:
                    layer.pad    = new[] { 0, 0, onnxStarts[0], 0, 0, 0, 0, 0 };
                    layer.pool   = new[] { int.MaxValue, int.MaxValue, onnxEnds[0], int.MaxValue, int.MaxValue, int.MaxValue, int.MaxValue, int.MaxValue };
                    layer.stride = new[] { 1, 1, onnxSteps[0], 1, 1, 1, 1, 1 };
                    break;

                case 2:
                    layer.pad    = new[] { 0, 0, onnxStarts[0], 0, 0, 0, 0, onnxStarts[1] };
                    layer.pool   = new[] { int.MaxValue, int.MaxValue, onnxEnds[0], int.MaxValue, int.MaxValue, int.MaxValue, int.MaxValue, onnxEnds[1] };
                    layer.stride = new[] { 1, 1, onnxSteps[0], 1, 1, 1, 1, onnxSteps[1] };
                    break;

                case 3:
                    layer.pad    = new[] { 0, 0, onnxStarts[0], 0, 0, 0, onnxStarts[1], onnxStarts[2] };
                    layer.pool   = new[] { int.MaxValue, int.MaxValue, onnxEnds[0], int.MaxValue, int.MaxValue, int.MaxValue, onnxEnds[1], onnxEnds[2] };
                    layer.stride = new[] { 1, 1, onnxSteps[0], 1, 1, 1, onnxSteps[1], onnxSteps[2] };
                    break;

                case 4:
                    layer.pad    = new[] { 0, 0, onnxStarts[0], 0, 0, onnxStarts[1], onnxStarts[2], onnxStarts[3] };
                    layer.pool   = new[] { int.MaxValue, int.MaxValue, onnxEnds[0], int.MaxValue, int.MaxValue, onnxEnds[1], onnxEnds[2], onnxEnds[3] };
                    layer.stride = new[] { 1, 1, onnxSteps[0], 1, 1, onnxSteps[1], onnxSteps[2], onnxSteps[3] };
                    break;

                case 5:
                    layer.pad    = new[] { 0, 0, onnxStarts[0], 0, onnxStarts[1], onnxStarts[2], onnxStarts[3], onnxStarts[4] };
                    layer.pool   = new[] { int.MaxValue, int.MaxValue, onnxEnds[0], int.MaxValue, onnxEnds[1], onnxEnds[2], onnxEnds[3], onnxEnds[4] };
                    layer.stride = new[] { 1, 1, onnxSteps[0], 1, onnxSteps[1], onnxSteps[2], onnxSteps[3], onnxSteps[4] };
                    break;

                default:
                    throw new ArgumentException($"Unsupported tensor rank {rank} for StridedSlice");
                }
                return(true);
            });
            rewritersNHWC.Add(Layer.Type.Flatten, (layer, net) =>
            {
                layer.type = Layer.Type.Nop;
                return(true);
            });
            rewritersNHWC.Add(Layer.Type.Squeeze, (layer, net) =>
            {
                int input0Rank = 4;
                if (m_RanksByName.ContainsKey(layer.inputs[0]) && m_RanksByName[layer.inputs[0]] != null)
                {
                    input0Rank = m_RanksByName[layer.inputs[0]].Value;
                }

                int rank = input0Rank;
                var combinePermutations = new[] { 0, 1, 2, 3 };
                for (int i = 0; i < layer.pool.Length; i++)
                {
                    int axis = layer.pool[i];
                    if (axis < 0)
                    {
                        axis = rank + 1 - axis;
                    }

                    var transpose = SqueezeAxisPermutationForMappingNHWCLayoutToBarracuda(rank, axis);

                    // there could be a 4 / 8D shape mismatch
                    if (transpose.Length == 8 && combinePermutations.Length == 4)
                    {
                        combinePermutations = Permutation4DTo8D(combinePermutations);
                    }

                    combinePermutations = TensorExtensions.Permute(transpose, combinePermutations);

                    rank--;
                }

                layer.type = Layer.Type.Transpose;
                layer.pool = combinePermutations;

                return(true);
            });
            rewritersNHWC.Add(Layer.Type.Unsqueeze, (layer, net) =>
            {
                int input0Rank = 4;
                if (m_RanksByName.ContainsKey(layer.inputs[0]) && m_RanksByName[layer.inputs[0]] != null)
                {
                    input0Rank = m_RanksByName[layer.inputs[0]].Value;
                }

                int rank = input0Rank;
                var combinePermutations = new[] { 0, 1, 2, 3 };
                for (int i = 0; i < layer.pool.Length; i++)
                {
                    int axis = layer.pool[i];
                    if (axis < 0)
                    {
                        axis = rank + 1 - axis;
                    }

                    var transpose = UnSqueezeAxisPermutationForMappingNHWCLayoutToBarracuda(rank, axis);

                    // there could be a 4 / 8D shape mismatch
                    if (transpose.Length == 8 && combinePermutations.Length == 4)
                    {
                        combinePermutations = Permutation4DTo8D(combinePermutations);
                    }

                    combinePermutations = TensorExtensions.Permute(transpose, combinePermutations);

                    rank++;
                }

                layer.type = Layer.Type.Transpose;
                layer.pool = combinePermutations;

                return(true);
            });
            rewritersNHWC.Add(Layer.Type.Load, (layer, net) =>
            {
                int rank = layer.axis;
                if (rank != 2 && rank != 3)
                {
                    return(true);
                }

                var constX = layer.DataSetToTensor(0);

                var shape = constX.shape;
                switch (rank)
                {
                case 2:
                    // _,_,N,_,_,C,_,_ => _,_,N,_,_,_,_,C
                    shape = new TensorShape(shape.batch, shape.height);
                    break;

                case 3:
                    // _,_,N,_,_,W,C,_ => _,_,N,_,_,_,W,C
                    shape = new TensorShape(shape.batch, shape.height, shape.width);
                    break;
                }

                var reshapedX = m_Ops.Reshape(constX, shape);
                layer.ApplyTensorToDataSet(reshapedX, 0);
                reshapedX.Dispose();
                constX.Dispose();
                return(true);
            });
            rewritersNHWC.Add(Layer.Type.MatMul, (layer, net) =>
            {
                string input0 = layer.inputs[0];
                if (!m_RanksByName.TryGetValue(input0, out int?input0Rank) || !input0Rank.HasValue)
                {
                    throw new Exception($"Must have input rank for {input0} in order to convert axis for NHWC op");
                }

                string input1 = layer.inputs[1];
                if (!m_RanksByName.TryGetValue(input1, out int?input1Rank) || !input1Rank.HasValue)
                {
                    throw new Exception($"Must have input rank for {input1} in order to convert axis for NHWC op");
                }

                layer.pool = new[] { input0Rank.Value, input1Rank.Value };

                int outputRank = Math.Max(input0Rank.Value, input1Rank.Value);

                if (outputRank <= 2)
                {
                    return(true);
                }

                Layer input0Transposed = net.Transpose($"Transpose_For_{input0}", input0, input0Rank.Value == 3 ? k_FromNCHtoN1WC : k_ToNHWC);
                Layer input1Transposed = net.Transpose($"Transpose_For_{input1}", input1, input1Rank.Value == 3 ? k_FromNCHtoN1WC : k_ToNHWC);

                string originalLayerName = layer.name;
                layer.name      = $"{layer.name}_NHWC";
                layer.inputs[0] = input0Transposed.name;
                layer.inputs[1] = input1Transposed.name;
                net.model.layers.Add(layer);

                net.Transpose(originalLayerName, layer.name, outputRank == 3 ? k_FromN1WCtoNCH : k_ToNCHW);

                return(false);
            });
            rewritersNHWC.Add(Layer.Type.Pad, PadNHWC);

            return(rewritersNHWC);
        }