コード例 #1
0
ファイル: Bandpass.cs プロジェクト: VoidXH/Cavern
        /// <summary>
        /// Bandpass EQ curve, recommended for stage subwoofers.
        /// </summary>
        /// <param name="lowFreq">Low frequency (highpass) cutoff knee</param>
        /// <param name="highFreq">High frequency (lowpass) cutoff knee</param>
        /// <param name="sampleRate">Sample rate of the system to be EQ'd</param>
        /// <param name="resolution">Sample resolution for <see cref="this[double]"/>, must be a power of 2</param>
        /// <param name="q">Q-factor of the filter</param>
        /// <param name="order">Each order increases the slope with 6 dB/octave</param>
        /// <param name="gain">Filter gain</param>
        public Bandpass(double lowFreq, double highFreq, int sampleRate, int resolution, double q = QFactor.reference, int order = 1,
                        double gain = 6)
        {
            positioner = resolution * 2.0 / sampleRate;
            float[] reference = SweepGenerator.Exponential(20, sampleRate * .5f, resolution * 2, sampleRate),
            response = reference.FastClone();
            BandpassFlat filter = new BandpassFlat(lowFreq, highFreq, sampleRate, q, order);

            filter.Process(response);
            spectrum = Measurements.GetSpectrum(Measurements.GetFrequencyResponse(reference, response));
            GraphUtils.ConvertToDecibels(spectrum);
            this.gain = gain;
        }
コード例 #2
0
ファイル: Program.cs プロジェクト: hughpyle/inguz-InguzDSP
        static ISoundObj GetSignalGenerator(double dBfs, out string desc)
        {
            double gain = MathUtil.gain(dBfs);
            ISoundObj signalGenerator = null;
            Sequencer seq;
            string description = "Unknown";
            switch (_siggen)
            {
                case "IDENT":
                    // Left-right identification: embedded resource
                    Assembly ass = Assembly.GetExecutingAssembly();
                    foreach (string s in ass.GetManifestResourceNames())
                    {
                        if (s.Contains("LeftRight"))
                        {
                            Stream res = ass.GetManifestResourceStream(s);
                            WaveReader rdr = new WaveReader(res);
                            // The stream is stereo, but we want to alternate
                            seq = new Sequencer();

                            for (int j = 0; j < 10; j++)
                            {
                                seq.Add(rdr, new List<double>(new double[] { gain, 0 }));
                                seq.Add(new NoiseGenerator(NoiseType.SILENCE, 2, 1.0, _inputSampleRate, 0.0, false));
                                seq.Add(rdr, new List<double>(new double[] { 0, gain }));
                                seq.Add(new NoiseGenerator(NoiseType.SILENCE, 2, 1.0, _inputSampleRate, 0.0, false));
                            }

                            signalGenerator = seq;
                            break;
                        }
                    }
                    /*
                    // Left-right identification signal: morse code
                    MorseCode envL = new MorseCode(" " + _sigparamA, 10, true);
                    ISoundObj sigL = new SweepGenerator(1, envL.LengthSeconds * 5, 220, 7040, _inputSampleRate, 0, false, gain, true);
                    envL.Input = sigL;

                    MorseCode envR = new MorseCode(" " + _sigparamB, 10, true);
                    ISoundObj sigR = new SweepGenerator(1, envR.LengthSeconds * 5, 7040, 220, _inputSampleRate, 0, false, gain, true);
                    envR.Input = sigR;

                    signalGenerator = new ChannelSplicer();
                    (signalGenerator as ChannelSplicer).Add(envL);
                    (signalGenerator as ChannelSplicer).Add(envR);
                    */
                    description = String.Format("Left/Right channel identification");
                    break;

                case "SWEEP":
                    seq = new Sequencer();
                    if (_sigparam1 == 0)
                    {
                        _sigparam1 = 45;
                    }
                    int lengthSamples = (int)(_sigparam1 * _inputSampleRate);
                    if (lengthSamples < 8388608)
                    {
                        // High-accuracy logarithmic sweep starting at 10Hz
                        int fade = (int)(_inputSampleRate / 20);
                        FFTSweepGenerator sg = new FFTSweepGenerator(2, lengthSamples, 10, _inputSampleRate / 2, _inputSampleRate, gain, false);
                        seq.Add(sg);
                        description = String.Format("Logarithmic sine sweep 10Hz to {0}Hz in {1} seconds", _inputSampleRate / 2, _sigparam1);
                    }
                    else
                    {
                        // Simple logarithmic sweep starting at 10Hz, windowed (uses much less memory!)
                        int fade = (int)(_inputSampleRate / 20);
                        BlackmanHarris bhwf = new BlackmanHarris(lengthSamples / 2, fade, (int)((lengthSamples / 2) - fade));
                        SweepGenerator sg = new SweepGenerator(2, lengthSamples, 10, _inputSampleRate / 2, _inputSampleRate, gain, false);
                        bhwf.Input = sg;
                        seq.Add(bhwf);
                        description = String.Format("Log sine sweep 10Hz to {0}Hz in {1} seconds", _inputSampleRate / 2, _sigparam1);
                    }
                    // Follow by 3 seconds of silence
                    seq.Add(new NoiseGenerator(NoiseType.SILENCE, 2, 3.0, _inputSampleRate, 0.0, false));
                    signalGenerator = seq;
                    break;

                case "SINE":
                    signalGenerator = new SineGenerator(2, _inputSampleRate, _sigparam1, gain);
                    description = String.Format("{0}Hz sine", _sigparam1);
                    break;

                case "QUAD":
                    signalGenerator = new SineQuadGenerator(2, _inputSampleRate, _sigparam1, gain);
                    description = String.Format("{0}Hz quadrature", _sigparam1);
                    break;

                case "SQUARE":
                    signalGenerator = new SquareGenerator(2, _inputSampleRate, _sigparam1, gain);
                    description = String.Format("{0}Hz non-bandlimited square", _sigparam1);
                    break;

                case "BLSQUARE":
                    signalGenerator = new BandLimitedSquareGenerator(2, _inputSampleRate, _sigparam1, gain);
                    description = String.Format("{0}Hz bandlimited square", _sigparam1);
                    break;

                case "TRIANGLE":
                    signalGenerator = new TriangleGenerator(2, _inputSampleRate, _sigparam1, gain);
                    description = String.Format("{0}Hz non-bandlimited triangle", _sigparam1);
                    break;

                case "BLTRIANGLE":
                    signalGenerator = new BandLimitedTriangleGenerator(2, _inputSampleRate, _sigparam1, gain);
                    description = String.Format("{0}Hz bandlimited triangle", _sigparam1);
                    break;

                case "SAWTOOTH":
                    signalGenerator = new SawtoothGenerator(2, _inputSampleRate, _sigparam1, gain);
                    description = String.Format("{0}Hz non-bandlimited sawtooth", _sigparam1);
                    break;

                case "BLSAWTOOTH":
                    signalGenerator = new BandLimitedSawtoothGenerator(2, _inputSampleRate, _sigparam1, gain);
                    description = String.Format("{0}Hz bandlimited sawtooth", _sigparam1);
                    break;

                case "WHITE":
                    signalGenerator = new NoiseGenerator(NoiseType.WHITE, 2, int.MaxValue, _inputSampleRate, gain, true);
                    description = String.Format("White noise");
                    break;

                case "PINK":
                    bool mono = (_sigparam1 != 0 ? true : false);
                    signalGenerator = new NoiseGenerator(NoiseType.PINK, 2, int.MaxValue, _inputSampleRate, gain, mono);
                    description = String.Format("Pink noise {0}", mono ? "(mono)" : "(stereo)" );
                    break;

                case "INTERMODULATION":
                    double n = 1;
                    description = String.Format("Intermodulation test {0}Hz", _sigparam1);
                    if (_sigparam2 != 0) { n++; description = description + " + " + _sigparam2 + "Hz"; }
                    if (_sigparam3 != 0) { n++; description = description + " + " + _sigparam3 + "Hz"; }
                    signalGenerator = new Mixer();
                    (signalGenerator as Mixer).Add(new SineGenerator(2, _inputSampleRate, _sigparam1, gain), 1/n);
                    if (_sigparam2 != 0) (signalGenerator as Mixer).Add(new SineGenerator(2, _inputSampleRate, _sigparam2, gain), 1 / n);
                    if (_sigparam3 != 0) (signalGenerator as Mixer).Add(new SineGenerator(2, _inputSampleRate, _sigparam3, gain), 1 / n);
                    break;

                case "SHAPEDBURST":
                    description = String.Format("{0}Hz windowed (Blackman) over {1} cycles", _sigparam1, _sigparam2);
                    throw new NotImplementedException();
                    //break;

                default:
                    _siggen = null;
                    break;
            }
            if (IsSigGenEQ())
            {
                if (IsSigGenEQBoth())
                {
                    description = description + ", with EQ processing";
                }
                else if (IsSigGenEQL())
                {
                    description = description + ", with EQ processing in left channel";
                }
                else if (IsSigGenEQR())
                {
                    description = description + ", with EQ processing in right channel";
                }
                else
                {
                    description = description + ", with EQ processing";
                }
            }
            desc = description;
            return signalGenerator;
        }