コード例 #1
0
        public void ShouldTrainUsingCrossEntropyCostFunction()
        {
            var stochasticGradientDescent = new StochasticGradientDescent(new CrossEntropy(), _layers, 3000, 4, 5D, 0);

            stochasticGradientDescent.Train(_trainingData);

            var neuralNetwork = new NeuralNetwork(_layers, _layers.First().PrimaryNeuronsCount);
            var result1       = neuralNetwork.Run(_trainingData[0].Inputs);

            result1.Should().HaveCount(1);
            Math.Round(result1[0], 10).Should().Be(0.0005468953D);

            var result2 = neuralNetwork.Run(_trainingData[1].Inputs);

            result2.Should().HaveCount(1);
            Math.Round(result2[0], 10).Should().Be(0.9993728892D);

            var result3 = neuralNetwork.Run(_trainingData[2].Inputs);

            result3.Should().HaveCount(1);
            Math.Round(result3[0], 10).Should().Be(0.9994636693D);

            var result4 = neuralNetwork.Run(_trainingData[3].Inputs);

            result4.Should().HaveCount(1);
            Math.Round(result4[0], 10).Should().Be(0.0008765251D);
        }
コード例 #2
0
        public void ShouldTrainUsingQuadraticCostFunction()
        {
            var stochasticGradientDescent = new StochasticGradientDescent(new Quadratic(), _layers, 3000, 4, 5D, 0);

            stochasticGradientDescent.Train(_trainingData);

            var neuralNetwork = new NeuralNetwork(_layers, _layers.First().PrimaryNeuronsCount);
            var result1       = neuralNetwork.Run(_trainingData[0].Inputs);

            result1.Should().HaveCount(1);
            Math.Round(result1[0], 10).Should().Be(0.0245579310D);

            var result2 = neuralNetwork.Run(_trainingData[1].Inputs);

            result2.Should().HaveCount(1);
            Math.Round(result2[0], 10).Should().Be(0.9661695582D);

            var result3 = neuralNetwork.Run(_trainingData[2].Inputs);

            result3.Should().HaveCount(1);
            Math.Round(result3[0], 10).Should().Be(0.9852113647D);

            var result4 = neuralNetwork.Run(_trainingData[3].Inputs);

            result4.Should().HaveCount(1);
            Math.Round(result4[0], 10).Should().Be(0.0320611480D);
        }
コード例 #3
0
        public void ShouldTrainUsingRegularizationParam()
        {
            var stochasticGradientDescent = new StochasticGradientDescent(new CrossEntropy(), _layers, 3000, 4, 5D, 0.01D);

            stochasticGradientDescent.Train(_trainingData);

            var neuralNetwork = new NeuralNetwork(_layers, _layers.First().PrimaryNeuronsCount);
            var result1       = neuralNetwork.Run(_trainingData[0].Inputs);

            result1.Should().HaveCount(1);
            Math.Round(result1[0], 10).Should().Be(0.0285179059D);

            var result2 = neuralNetwork.Run(_trainingData[1].Inputs);

            result2.Should().HaveCount(1);
            Math.Round(result2[0], 10).Should().Be(0.9714820792D);

            var result3 = neuralNetwork.Run(_trainingData[2].Inputs);

            result3.Should().HaveCount(1);
            Math.Round(result3[0], 10).Should().Be(0.9714820797D);

            var result4 = neuralNetwork.Run(_trainingData[3].Inputs);

            result4.Should().HaveCount(1);
            Math.Round(result4[0], 10).Should().Be(0.0285163624D);
        }
コード例 #4
0
        public void Run()
        {
            var layer = new ILayer[] { new FullyConnectedLayer(new Sigmoid(), 3, 2), new FullyConnectedLayer(new Sigmoid(), 1, 3) };

            Randomiser.Randomise(layer, new Random(5));

            Console.WriteLine("Evaluationg untrained neural network");
            DisplayEvaluation(layer);

            var stochasticGradientDescent = new StochasticGradientDescent(new CrossEntropy(), layer, 3000, 4, 5D, 0D);
            var trainingData = new List <TrainingElement>
            {
                new TrainingElement
                {
                    Inputs          = new double[] { 0D, 0D },
                    ExpectedOutputs = new double[] { 0D }
                },
                new TrainingElement
                {
                    Inputs          = new double[] { 1D, 0D },
                    ExpectedOutputs = new double[] { 1D }
                },
                new TrainingElement
                {
                    Inputs          = new double[] { 0D, 1D },
                    ExpectedOutputs = new double[] { 1D }
                },
                new TrainingElement
                {
                    Inputs          = new double[] { 1D, 1d },
                    ExpectedOutputs = new double[] { 0D }
                }
            };

            stochasticGradientDescent.Train(trainingData);

            Console.WriteLine("Evaluationg trained neural network");
            DisplayEvaluation(layer);
        }
コード例 #5
0
 public void Fit(Matrix <double> x, Vector <double> y, bool addOnes = true, bool verbose = false) => _sgd.Train(x, y, addOnes, true, verbose);