public LinearProgression Smoothed(TimeSpan windowSize)
        {
            // make a List of the cumulative time spent
            DateTime minDate = this.Owner.DiscoveryDate;
            IEnumerable <ListItemStats <DateTime, ParticipationAndSummary> > items = this.searchHelper.AllItems;
            LinearProgression cumulatives = new LinearProgression();
            // first sort the starts and ends
            StatList <DateTime, double> deltaIntensities = new StatList <DateTime, double>(new DateComparer(), new FloatAdder());

            foreach (ListItemStats <DateTime, ParticipationAndSummary> item in items)
            {
                deltaIntensities.Add(item.Value.Participation.StartDate, 1);
                deltaIntensities.Add(item.Value.Participation.EndDate, -1);
            }
            if (deltaIntensities.NumItems < 1)
            {
                return(new LinearProgression());
            }
            DateTime maxDate = deltaIntensities.GetLastValue().Key;
            // now add up the (possibly overlapping) values
            double   intensity = 0;
            DateTime prevDate  = minDate;
            double   sum       = 0;

            foreach (ListItemStats <DateTime, double> deltaIntensity in deltaIntensities.AllItems)
            {
                double duration = deltaIntensity.Key.Subtract(prevDate).TotalSeconds;
                sum       += intensity * duration;
                intensity += deltaIntensity.Value;

                cumulatives.Add(deltaIntensity.Key, sum);
                prevDate = deltaIntensity.Key;
            }
            // find what's in the sliding window by subtracting the cumulative from the shifted cumulative
            LinearProgression shiftedCumulatives = cumulatives.Shifted(windowSize);

            if (windowSize.TotalSeconds > 0)
            {
                cumulatives.Add(maxDate.Add(windowSize), sum);
                LinearProgression result = cumulatives.Minus(shiftedCumulatives);
                return(result);
            }
            else
            {
                shiftedCumulatives.Add(maxDate, sum);
                LinearProgression result = shiftedCumulatives.Minus(cumulatives);
                return(result);
            }
        }
コード例 #2
0
        private List <Datapoint> getDatapoints(IEnumerable <Activity> activities)
        {
            StatList <DateTime, int> discoveredCounts = new StatList <DateTime, int>(new DateComparer(), new IntAdder());

            foreach (Activity activity in activities)
            {
                discoveredCounts.Add(activity.DiscoveryDate, 1);
            }
            DateTime         minPossibleDate = TimeProgression.AbsoluteTime.StartDate;
            bool             isFirst         = false;
            List <Datapoint> datapoints      = new List <Datapoint>();

            // compute cumulative values
            foreach (DateTime when in discoveredCounts.Keys)
            {
                if (isFirst)
                {
                    isFirst = false;
                }
                TimeSpan duration   = when.Subtract(minPossibleDate);
                int      cumulative = discoveredCounts.CombineBeforeKey(when, true);
                datapoints.Add(new Datapoint(duration.TotalSeconds, cumulative, 1));
            }
            return(datapoints);
        }
コード例 #3
0
ファイル: TimingTests.cs プロジェクト: edekk/rawr-2.3.23
 public SampleItem()
 {
     foreach (var stat in Helpers.List)
     {
         StatList.Add(new AdditiveStatClass((float)_rng.NextDouble()));
     }
 }
コード例 #4
0
        public List <ProtoActivity> TextSearch(string query, int count)
        {
            if (query == null || query == "" || count < 1)
            {
                return(new List <ProtoActivity>(0));
            }

            StatList <double, ProtoActivity> sortedItems = new StatList <double, ProtoActivity>(new ReverseDoubleComparer(), new NoopCombiner <ProtoActivity>());

            foreach (ProtoActivity protoActivity in this.ProtoActivities)
            {
                double textQuality = this.stringQueryMatcher.StringScore(protoActivity.Text, query);
                if (textQuality > 0)
                {
                    double matchQuality = textQuality + protoActivity.IntrinsicInterest;

                    sortedItems.Add(matchQuality, protoActivity);
                }
            }
            count = Math.Min(count, sortedItems.NumItems);
            List <ProtoActivity> top = new List <ProtoActivity>(count);

            for (int i = 0; i < count; i++)
            {
                top.Add(sortedItems.GetValueAtIndex(i).Value);
            }
            return(top);
        }
コード例 #5
0
        private IEnumerable <int> nChooseK(int maxExclusive, int count)
        {
            StatList <int, bool> choices = new StatList <int, bool>(new IntComparerer(), new NoopCombiner <bool>());

            if (count > maxExclusive)
            {
                count = maxExclusive;
            }
            for (int i = 0; i < count; i++)
            {
                int randInt = this.generator.Next(maxExclusive - i);
                int index   = randInt;
                while (true)
                {
                    int smallerCount = choices.CountBeforeKey(index, true);
                    if (index != randInt + smallerCount)
                    {
                        index = randInt + smallerCount;
                    }
                    else
                    {
                        break;
                    }
                }
                choices.Add(index, true);
            }
            return(choices.Keys);
        }
コード例 #6
0
 public void AddTotalSaleValue()
 {
     StatList.Clear();
     StatList.Add(new Statistics(SellingTotal(), "Indkomst"));
     StatList.Add(new Statistics(BuyingTotal(), "Udgifter"));
     StatList.Add(new Statistics((SellingTotal() - BuyingTotal()), "Profit"));
     StatList.Add(new Statistics(0, ""));
 }
コード例 #7
0
        private StatList <DateTime, double> GetEfficiencies()
        {
            // Suppose efficiency[day[i]] = i
            StatList <DateTime, double> efficiencies = new StatList <DateTime, double>(new DateComparer(), new FloatAdder());

            for (int i = 1; i < 365; i++)
            {
                efficiencies.Add(new DateTime(2000, 1, 1).AddDays(i), Math.Pow(1.01, i));
            }
            return(efficiencies);
        }
コード例 #8
0
 public void SetValue(StatType type, object value)
 {
     if (!StatList.ContainsKey(type))
     {
         StatList.Add(type, value);
     }
     else
     {
         StatList[type] = value;
     }
     RaiseEvent();
 }
コード例 #9
0
        public void ExtractOriginals()
        {
            foreach (var tile in TileCodes)
            {
                var path = $@"D:\Data\DEM\NZ\{tile}.asc";
                var file = NzReader.Read(path);
                Assert.AreEqual(8192, file.Columns);
                Assert.AreEqual(8192, file.Rows);
                Assert.AreEqual(-999, file.NoDataValue);

                var list = new StatList();
                var arr  = file.Data;
                foreach (var index in arr.Indices())
                {
                    var value = arr[index];
                    if (value == file.NoDataValue)
                    {
                        foreach (var neighbour in arr.Neighbours(index))
                        {
                            var neighbourValue = arr[neighbour];
                            if (neighbourValue != file.NoDataValue)
                            {
                                list.Add(neighbourValue);
                            }
                        }
                    }
                }

                if (list.Any())
                {
                    file.ReplaceNoDataValue(list.Average());
                }

                var outputPath = Path.Combine(OutputPath, $"{tile}.npy");
                np.save(outputPath, file.Data);
                using (var stream = File.Create(Path.Combine(OutputPath, $"{tile}.png")))
                {
                    new ImageConverter().ToPng(file.Data, stream, HeightToGrayscale.FullRange8(file.Data));
                }
            }
        }
コード例 #10
0
        // Find the top few matching activities
        public List <Activity> FindBestMatches(ActivityDescriptor descriptor, int count)
        {
            if (count < 1)
            {
                return(new List <Activity>(0));
            }
            if (count == 1)
            {
                Activity best = this.ResolveDescriptor(descriptor);
                if (best != null)
                {
                    return new List <Activity>()
                           {
                               best
                           }
                }
                ;
                return(new List <Activity>()
                {
                });
            }
            IEnumerable <Activity>      activities  = this.GetCandidateMatches(descriptor);
            StatList <double, Activity> sortedItems = new StatList <double, Activity>(new ReverseDoubleComparer(), new NoopCombiner <Activity>());

            foreach (Activity activity in activities)
            {
                double quality = this.MatchQuality(descriptor, activity);
                if (quality > 0)
                {
                    sortedItems.Add(quality, activity);
                }
            }
            count = Math.Min(count, sortedItems.NumItems);
            List <Activity> top = new List <Activity>(count);

            for (int i = 0; i < count; i++)
            {
                top.Add(sortedItems.GetValueAtIndex(i).Value);
            }
            return(top);
        }
コード例 #11
0
        public void LoadFile()
        {
            foreach (var tile in new[] { "BJ", "UB", "UC" })
            {
                var path = $@"D:\Data\DEM\NZ\{tile}.asc";
                var file = NzReader.Read(path);
                Assert.AreEqual(8192, file.Columns);
                Assert.AreEqual(8192, file.Rows);
                Assert.AreEqual(-999, file.NoDataValue);

                var list = new StatList();
                var arr  = file.Data;
                foreach (var index in arr.Indices())
                {
                    var value = arr[index];
                    if (value == file.NoDataValue)
                    {
                        foreach (var neighbour in arr.Neighbours(index))
                        {
                            var neighbourValue = arr[neighbour];
                            if (neighbourValue != file.NoDataValue)
                            {
                                list.Add(neighbourValue);
                            }
                        }
                    }
                }

                file.ReplaceNoDataValue(list.Average());


                using (var stream = File.Create($@"D:\Data\DEM\NZ\{tile}.png"))
                {
                    new ImageConverter().ToPng(file.Data, stream, HeightToGrayscale.FullRange8(file.Data));
                }
            }
        }
コード例 #12
0
 public override void Finish()
 {
     this.log("Grouping participations by category");
     foreach (KeyValuePair <String, Dictionary <Activity, int> > entry in this.feedbacks)
     {
         this.log("");
         this.log("Instances of feedback " + entry.Key + ":");
         // sort
         StatList <int, Activity> sorted = new StatList <int, Activity>(new IntComparerer(), null);
         foreach (KeyValuePair <Activity, int> e2 in entry.Value)
         {
             sorted.Add(e2.Value, e2.Key);
         }
         // Find the activities that were done often enough to be noteworthy
         int max               = sorted.GetLastValue().Key;
         int cumulative        = 0;
         int minInterestingKey = 0;
         List <ListItemStats <int, Activity> > interesting = new List <ListItemStats <int, Activity> >();
         foreach (ListItemStats <int, Activity> stats in sorted.AllItems)
         {
             cumulative += stats.Key;
             // Some activities were only done a very small number of times. We skip displaying those because they might be distracting
             if (cumulative >= max)
             {
                 interesting.Add(stats);
             }
         }
         // sort the more commonly done activities to the top
         interesting.Reverse();
         foreach (ListItemStats <int, Activity> stats in interesting)
         {
             this.log(stats.Value + " : " + stats.Key + " times");
         }
     }
     base.Finish();
 }
コード例 #13
0
        public Participation_BinComparison_View(Engine engine, IEnumerable <Activity> activitiesToPredictFrom, Activity activityToPredict, TimeSpan windowSize)
        {
            DateTime now = DateTime.Now;

            engine.EnsureRatingsAreAssociated();

            LinearProgression progressionToPredict = activityToPredict.ParticipationsSmoothed((new TimeSpan()).Subtract(windowSize));

            StatList <NeighborhoodInterpolation, Activity> results = new StatList <NeighborhoodInterpolation, Activity>(new Neighborhood_MiddleOutputMean_Comparer(), new NoopCombiner <Activity>());

            foreach (Activity activity in activitiesToPredictFrom)
            {
                System.Diagnostics.Debug.WriteLine("comparing " + activity + " and " + activityToPredict.Name);
                List <Datapoint> datapoints = activity.compareParticipations(windowSize, progressionToPredict, now.Subtract(windowSize));

                // put data into the interpolator
                FloatRange inputRange = new FloatRange(0, true, windowSize.TotalSeconds, true);
                AdaptiveLinearInterpolator <Distribution> interpolator = new AdaptiveLinearInterpolator <Distribution>(new HyperBox <Distribution>(new FloatRange[] { inputRange }), new DistributionAdder());
                foreach (Datapoint datapoint in datapoints)
                {
                    interpolator.AddDatapoint(new AdaptiveInterpolation.Datapoint <Distribution>(datapoint.Input, Distribution.MakeDistribution(datapoint.Output, 0, datapoint.Weight)));
                }

                // ask the interpolator which input has the highest average output
                IEnumerable <double[]> representativePoints = interpolator.FindRepresentativePoints();
                if (representativePoints.Count() > 0)
                {
                    double[] bestInput = new double[1];
                    AdaptiveInterpolation.Distribution bestOutput = null;
                    foreach (double[] coordinates in representativePoints)
                    {
                        AdaptiveInterpolation.Distribution output = interpolator.Interpolate(coordinates);
                        if (bestOutput == null || output.Mean > bestOutput.Mean)
                        {
                            bestInput  = coordinates;
                            bestOutput = output;
                        }
                    }

                    // Check nearby regions for their outputs too
                    HyperBox <Distribution> inputNeighborhood = interpolator.FindNeighborhoodCoordinates(bestInput);
                    double inputNeighborhoodWidth             = inputNeighborhood.Coordinates[0].Width;
                    double lowerInput  = Math.Max(inputNeighborhood.Coordinates[0].LowCoordinate - inputNeighborhoodWidth, inputRange.LowCoordinate);
                    double higherInput = Math.Min(inputNeighborhood.Coordinates[0].HighCoordinate + inputNeighborhoodWidth, inputRange.HighCoordinate);

                    NeighborhoodInterpolation result = new NeighborhoodInterpolation();
                    result.Middle = new Interpolation(bestInput[0], bestOutput);
                    result.Left   = new Interpolation(lowerInput, interpolator.Interpolate(new double[] { lowerInput }));
                    result.Right  = new Interpolation(higherInput, interpolator.Interpolate(new double[] { higherInput }));

                    results.Add(result, activity);
                }
            }

            IEnumerable <ListItemStats <NeighborhoodInterpolation, Activity> > resultList = results.AllItems;

            if (resultList.Count() <= 0)
            {
                // This shouldn't be able to happen unless we disallow predicting the activity from itself
                this.SubLayout = new TextblockLayout("No activities found!");
            }
            else
            {
                int numWindowDays = (int)windowSize.TotalDays;
                GridLayout_Builder layoutBuilder = new Vertical_GridLayout_Builder().Uniform();
                if (resultList.Count() > 1)
                {
                    string title = "Activities that when done most strongly predict future participations in " + activityToPredict.Name;
                    layoutBuilder.AddLayout(new TextblockLayout(title));
                }
                else
                {
                    string title = "Predicting future participations in " + activityToPredict.Name;
                    layoutBuilder.AddLayout(new TextblockLayout(title));
                }

                string explanation = "A block of the form a->{b,c,d} means that when you have spent an average of <a> min/day on the given activity over the last " + numWindowDays + " days, " +
                                     "you have spent on average <c> min/day on " + activityToPredict.Name + " over the next " + numWindowDays + " days, with <b> and <d> marking -1 and +1 standard deviation, respectively";
                layoutBuilder.AddLayout(new TextblockLayout(explanation));

                int count = 0;
                foreach (ListItemStats <NeighborhoodInterpolation, Activity> result in resultList.Reverse())
                {
                    count++;
                    if (count > 3)
                    {
                        break;
                    }
                    Activity activity = result.Value;
                    NeighborhoodInterpolation neighborhood = result.Key;
                    layoutBuilder.AddLayout(new TextblockLayout("After " + activity.Name + ":"));
                    foreach (Interpolation interpolation in neighborhood.Items)
                    {
                        double inputSecondsPerWindow = interpolation.Input;
                        double inputMinutesPerDay    = inputSecondsPerWindow / windowSize.TotalDays / 60;

                        double avgOutputSecondsPerWindow = interpolation.Output.Mean;
                        double avgOutputMinutesPerDay    = avgOutputSecondsPerWindow / windowSize.TotalDays / 60;

                        double stddevOutputSecondsPerWindow = interpolation.Output.StdDev;
                        double stddevOutputMinutesPerDay    = stddevOutputSecondsPerWindow / windowSize.TotalDays / 60;

                        string itemLine = Math.Round(inputMinutesPerDay, 1) + " -> {" +
                                          Math.Round((avgOutputMinutesPerDay - stddevOutputMinutesPerDay), 1) + "," +
                                          Math.Round(avgOutputMinutesPerDay, 1) + "," +
                                          Math.Round((avgOutputMinutesPerDay + stddevOutputMinutesPerDay), 1) + "}";
                        layoutBuilder.AddLayout(new TextblockLayout(itemLine));
                    }
                }

                this.SubLayout = layoutBuilder.Build();
            }
        }
コード例 #14
0
        public ParticipationCorrelationView(Engine engine, IEnumerable <Activity> activitiesToPredictFrom, Activity activityToPredict, TimeSpan windowSize)
        {
            DateTime now = DateTime.Now;

            engine.EnsureRatingsAreAssociated();

            LinearProgression progressionToPredict = activityToPredict.ParticipationsSmoothed((new TimeSpan()).Subtract(windowSize));

            StatList <double, Activity> results = new StatList <double, Activity>(new DoubleComparer(), new NoopCombiner <Activity>());

            foreach (Activity activity in activitiesToPredictFrom)
            {
                System.Diagnostics.Debug.WriteLine("comparing " + activity + " and " + activityToPredict.Name);
                List <Datapoint> datapoints = activity.compareParticipations(windowSize, progressionToPredict, now.Subtract(windowSize));

                // now compute the value of the formula
                Correlator correlator = new Correlator();
                foreach (Datapoint datapoint in datapoints)
                {
                    correlator.Add(datapoint);
                }

                double outputIncreasePerInputIncrease = correlator.Slope;
                if (!double.IsNaN(outputIncreasePerInputIncrease))
                {
                    results.Add(outputIncreasePerInputIncrease, activity);
                }
            }

            IEnumerable <ListItemStats <double, Activity> > resultList = results.AllItems;

            GridLayout_Builder layoutBuilder = new Vertical_GridLayout_Builder().Uniform();
            List <ListItemStats <double, Activity> > mostPositivelyCorrelated = new List <ListItemStats <double, Activity> >();
            List <ListItemStats <double, Activity> > mostNegativelyCorrelated = new List <ListItemStats <double, Activity> >();
            int i            = 0;
            int numPositives = Math.Min(4, resultList.Count());

            foreach (ListItemStats <double, Activity> result in resultList.Reverse())
            {
                mostPositivelyCorrelated.Add(result);
                i++;
                if (i > numPositives)
                {
                    break;
                }
            }
            i = 0;
            int numNegatives = Math.Min(4, resultList.Count() - numPositives);

            foreach (ListItemStats <double, Activity> result in resultList)
            {
                mostNegativelyCorrelated.Add(result);
                i++;
                if (i > numNegatives)
                {
                    break;
                }
            }

            if (resultList.Count() <= 0)
            {
                // This shouldn't be able to happen unless we disallow predicting the activity from itself
                this.SubLayout = new TextblockLayout("No activities found!");
            }
            else
            {
                string title = "Things you do that are correlated with doing more or less of " + activityToPredict.Name + " over the following " +
                               Math.Round(windowSize.TotalDays, 0) + " days";
                layoutBuilder.AddLayout(new TextblockLayout(title));

                if (numPositives > 0)
                {
                    if (numPositives > 1)
                    {
                        layoutBuilder.AddLayout(new TextblockLayout("Doing one minute of these activities adds this many minutes:"));
                    }
                    else
                    {
                        layoutBuilder.AddLayout(new TextblockLayout("Doing one minute of this activity adds this many minutes:"));
                    }
                    foreach (ListItemStats <double, Activity> result in mostPositivelyCorrelated)
                    {
                        double   correlation = result.Key;
                        Activity activity    = result.Value;
                        String   message     = activity.Name + ": " + Math.Round(correlation, 5);
                        layoutBuilder.AddLayout(new TextblockLayout(message));
                    }
                }

                if (numNegatives > 0)
                {
                    if (numNegatives > 1)
                    {
                        layoutBuilder.AddLayout(new TextblockLayout("Doing one minute of these activities subtracts this many minutes:"));
                    }
                    else
                    {
                        layoutBuilder.AddLayout(new TextblockLayout("Doing one minute of this activity subtracts this many minutes:"));
                    }
                    foreach (ListItemStats <double, Activity> result in mostNegativelyCorrelated)
                    {
                        double   correlation = result.Key;
                        Activity activity    = result.Value;
                        String   message     = activity.Name + ": " + Math.Round(correlation, 5);
                        layoutBuilder.AddLayout(new TextblockLayout(message));
                    }
                }

                this.SubLayout = layoutBuilder.Build();
            }
        }