コード例 #1
0
ファイル: MasterList.cs プロジェクト: Flavio58it/MyCaffe
        /// <summary>
        /// Returns the image mean for the ImageSet.
        /// </summary>
        /// <param name="log">Specifies the Log used to output status.</param>
        /// <param name="rgAbort">Specifies a set of wait handles for aborting the operation.</param>
        /// <param name="bQueryOnly">Specifies whether or not to only query for the mean and not calculate if missing.</param>
        /// <returns>The SimpleDatum with the image mean is returned.</returns>
        public SimpleDatum GetImageMean(Log log, WaitHandle[] rgAbort, bool bQueryOnly)
        {
            if (m_imgMean != null || bQueryOnly)
            {
                return(m_imgMean);
            }

            int nLoadedCount = GetLoadedCount();
            int nTotalCount  = GetTotalCount();

            if (nLoadedCount < nTotalCount)
            {
                double dfPct = (double)nLoadedCount / (double)nTotalCount;

                if (log != null)
                {
                    log.WriteLine("WARNING: Cannot create the image mean until all images have loaded - the data is currently " + dfPct.ToString("P") + " loaded.");
                }

                return(null);
            }

            if (OnCalculateImageMean != null)
            {
                CalculateImageMeanArgs args = new CalculateImageMeanArgs(m_rgImages);
                OnCalculateImageMean(this, args);

                if (args.Cancelled)
                {
                    return(null);
                }

                m_imgMean = args.ImageMean;
                return(m_imgMean);
            }

            RawImageMean imgMean = m_factory.GetRawImageMean();

            if (m_imgMean != null)
            {
                m_imgMean = m_factory.LoadDatum(imgMean);
            }
            else
            {
                log.WriteLine("Calculating mean...");
                m_imgMean = SimpleDatum.CalculateMean(log, m_rgImages, rgAbort);
                m_factory.PutRawImageMean(m_imgMean, true);
            }

            m_imgMean.SetLabel(0);

            return(m_imgMean);
        }
コード例 #2
0
ファイル: Imageset.cs プロジェクト: Jason6583/MyCaffe
        /// <summary>
        /// Returns the image mean for the ImageSet.
        /// </summary>
        /// <param name="log">Specifies the Log used to output status.</param>
        /// <param name="rgAbort">Specifies a set of wait handles for aborting the operation.</param>
        /// <returns>The SimpleDatum with the image mean is returned.</returns>
        public SimpleDatum GetImageMean(Log log, WaitHandle[] rgAbort)
        {
            if (m_imgMean != null)
            {
                return(m_imgMean);
            }

            if (m_rgImages.Length == 0)
            {
                if (log != null)
                {
                    log.WriteLine("WARNING: Cannot create image mean with no images!");
                }
                return(null);
            }

            if (m_loadMethod != IMAGEDB_LOAD_METHOD.LOAD_ALL)
            {
                throw new Exception("Can only create image mean when using LOAD_ALL.");
            }

            if (m_nLoadLimit != 0)
            {
                throw new Exception("Can only create image mean when LoadLimit = 0.");
            }

            if (OnCalculateImageMean != null)
            {
                CalculateImageMeanArgs args = new CalculateImageMeanArgs(m_rgImages);
                OnCalculateImageMean(this, args);

                if (args.Cancelled)
                {
                    return(null);
                }

                m_imgMean = args.ImageMean;
                return(m_imgMean);
            }

            m_imgMean = SimpleDatum.CalculateMean(log, m_rgImages, rgAbort);
            m_imgMean.SetLabel(0);

            return(m_imgMean);
        }
コード例 #3
0
        public void LoadDatabase()
        {
            int nIdx   = 0;
            int nTotal = 50000;

            reportProgress(nIdx, 0, "Loading database...");

            Log log = new Log("MNIST");

            log.OnWriteLine += Log_OnWriteLine;

            DatasetFactory factory = new DatasetFactory();

            loadFile(m_param.DataBatchFile1, "CIFAR-10.training", nTotal, ref nIdx);
            loadFile(m_param.DataBatchFile2, "CIFAR-10.training", nTotal, ref nIdx);
            loadFile(m_param.DataBatchFile3, "CIFAR-10.training", nTotal, ref nIdx);
            loadFile(m_param.DataBatchFile4, "CIFAR-10.training", nTotal, ref nIdx);
            loadFile(m_param.DataBatchFile5, "CIFAR-10.training", nTotal, ref nIdx);
            SourceDescriptor srcTrain = factory.LoadSource("CIFAR-10.training");

            m_factory.SaveImageMean(SimpleDatum.CalculateMean(log, m_rgImg.ToArray(), new WaitHandle[] { new ManualResetEvent(false) }), true, srcTrain.ID);

            m_rgImg = new List <SimpleDatum>();
            nIdx    = 0;
            nTotal  = 10000;
            loadFile(m_param.TestBatchFile, "CIFAR-10.testing", nTotal, ref nIdx);
            SourceDescriptor srcTest = factory.LoadSource("CIFAR-10.testing");

            m_factory.SaveImageMean(SimpleDatum.CalculateMean(log, m_rgImg.ToArray(), new WaitHandle[] { new ManualResetEvent(false) }), true, srcTest.ID);

            DatasetDescriptor ds = new DatasetDescriptor(0, "CIFAR-10", null, null, srcTrain, srcTest, "CIFAR-10", "CiFar-10 Dataset");

            factory.AddDataset(ds);
            factory.UpdateDatasetCounts(ds.ID);

            if (OnCompleted != null)
            {
                OnCompleted(this, new EventArgs());
            }
        }
コード例 #4
0
ファイル: MnistDataLoader.cs プロジェクト: Jason6583/MyCaffe
        private void loadFile(string strImagesFile, string strLabelsFile, string strSourceName)
        {
            Stopwatch sw = new Stopwatch();

            reportProgress(0, 0, " Source: " + strSourceName);
            reportProgress(0, 0, "  loading " + strImagesFile + "...");

            BinaryFile image_file = new app.BinaryFile(strImagesFile);
            BinaryFile label_file = new app.BinaryFile(strLabelsFile);

            Log log = new Log("MNIST");

            log.OnWriteLine += Log_OnWriteLine;

            try
            {
                // Verify the files
                uint magicImg = image_file.ReadUInt32();
                uint magicLbl = label_file.ReadUInt32();

                if (magicImg != 2051)
                {
                    throw new Exception("Incorrect image file magic.");
                }

                if (magicLbl != 2049)
                {
                    throw new Exception("Incorrect label file magic.");
                }

                uint num_items  = image_file.ReadUInt32();
                uint num_labels = label_file.ReadUInt32();

                if (num_items != num_labels)
                {
                    throw new Exception("The number of items must be equal to the number of labels!");
                }


                // Add the data source to the database.
                uint rows      = image_file.ReadUInt32();
                uint cols      = image_file.ReadUInt32();
                int  nChannels = 1; // black and white

                int nSrcId = m_factory.AddSource(strSourceName, nChannels, (int)cols, (int)rows, false, 0, true);

                m_factory.Open(nSrcId);
                m_factory.DeleteSourceData();

                // Storing to database;
                byte[] rgLabel;
                byte[] rgPixels;

                Datum datum = new Datum(false, nChannels, (int)cols, (int)rows, -1, DateTime.MinValue, null, null, 0, false, -1);

                reportProgress(0, (int)num_items, "  loading a total of " + num_items.ToString() + " items.");
                reportProgress(0, (int)num_items, "   (with rows: " + rows.ToString() + ", cols: " + cols.ToString() + ")");

                sw.Start();

                List <SimpleDatum> rgImg = new List <SimpleDatum>();

                for (int i = 0; i < num_items; i++)
                {
                    rgPixels = image_file.ReadBytes((int)(rows * cols));
                    rgLabel  = label_file.ReadBytes(1);

                    if (sw.Elapsed.TotalMilliseconds > 1000)
                    {
                        reportProgress(i, (int)num_items, " loading data...");
                        sw.Restart();
                    }

                    datum.SetData(rgPixels.ToList(), (int)rgLabel[0]);
                    m_factory.PutRawImageCache(i, datum);
                    rgImg.Add(new SimpleDatum(datum));
                }

                m_factory.ClearImageCashe(true);
                m_factory.UpdateSourceCounts();
                m_factory.SaveImageMean(SimpleDatum.CalculateMean(log, rgImg.ToArray(), new WaitHandle[] { new ManualResetEvent(false) }), true);

                reportProgress((int)num_items, (int)num_items, " loading completed.");
            }
            finally
            {
                image_file.Dispose();
                label_file.Dispose();
            }
        }
コード例 #5
0
        public void Create(DatasetConfiguration config, IXDatasetCreatorProgress progress)
        {
            string strCsvFile     = Properties.Settings.Default.CsvFile;
            string strDsName      = config.Name;
            string strTrainingSrc = config.Name + ".training";
            string strTestingSrc  = config.Name + ".testing";

            m_bCancel   = false;
            m_iprogress = progress;
            m_factory.DeleteSources(strTrainingSrc, strTestingSrc);

            Log log = new Log("CSV Dataset Creator");

            log.OnWriteLine += new EventHandler <LogArg>(log_OnWriteLine);

            try
            {
                //-----------------------------------------
                //  Load the schema that defines the layout
                //  of the CSV file.
                //-----------------------------------------

                m_schema = loadSchema(config.Settings);


                //-----------------------------------------
                // Load and parse the CSV file.
                //-----------------------------------------

                DataConfigSetting dsCsvFile = config.Settings.Find("CSV File");

                strCsvFile = dsCsvFile.Value.ToString();
                if (strCsvFile.Length == 0)
                {
                    throw new Exception("CSV data file name not specified!");
                }

                log.WriteLine("Loading the data file...");

                if (m_bCancel)
                {
                    return;
                }

                m_parser.Load(strCsvFile, m_schema);


                //-----------------------------------------
                // Split the data into training and testing
                // sets.
                //-----------------------------------------

                List <DataItem> rgTraining = new List <DataItem>();
                List <DataItem> rgTesting  = new List <DataItem>();

                DataConfigSetting dsPctTesting = config.Settings.Find("Testing Percentage");
                double            dfVal        = (double)dsPctTesting.Value;
                Random            random       = new Random();

                for (int i = 0; i < m_parser.Data.Count; i++)
                {
                    if (random.NextDouble() > dfVal)
                    {
                        rgTraining.Add(m_parser.Data[i]);
                    }
                    else
                    {
                        rgTesting.Add(m_parser.Data[i]);
                    }
                }

                Properties.Settings.Default.TestingPct = dfVal;


                //-----------------------------------------
                // Create the training data source.
                //-----------------------------------------

                int        nCellHorizCount = 0;
                List <int> rgDim           = getImageDim(m_parser, m_schema, out nCellHorizCount);
                int        nTrainSrcId     = m_factory.AddSource(strTrainingSrc, rgDim[0], rgDim[1], rgDim[2], false, 0);
                m_factory.Open(nTrainSrcId, 500, Database.FORCE_LOAD.FROM_FILE); // use file based data.

                log.WriteLine("Deleting existing data from '" + m_factory.OpenSource.Name + "'.");
                m_factory.DeleteSourceData();

                if (!loadData(log, m_factory, m_parser, rgTraining, rgDim, true, true))
                {
                    return;
                }

                m_factory.UpdateSourceCounts();
                updateLabels(m_factory);

                log.WriteLine("Creating the image mean...");
                SimpleDatum dMean = SimpleDatum.CalculateMean(log, m_rgImages.ToArray(), new WaitHandle[] { new ManualResetEvent(false) });
                m_factory.PutRawImageMean(dMean, true);
                m_rgImages.Clear();

                m_factory.Close();


                //-----------------------------------------
                // Create the testing data source.
                //-----------------------------------------

                int nTestSrcId = m_factory.AddSource(strTestingSrc, rgDim[0], rgDim[1], rgDim[2], false, 0);
                m_factory.Open(nTestSrcId, 500, Database.FORCE_LOAD.FROM_FILE); // use file based data.

                log.WriteLine("Deleting existing data from '" + m_factory.OpenSource.Name + "'.");
                m_factory.DeleteSourceData();

                if (!loadData(log, m_factory, m_parser, rgTesting, rgDim, false, false))
                {
                    return;
                }

                m_factory.UpdateSourceCounts();
                updateLabels(m_factory);
                m_factory.Close();


                //-----------------------------------------
                // Crate the data set.
                //-----------------------------------------

                log.WriteLine("Done loading training and testing data.");
                int nDatasetID = 0;

                using (DNNEntities entities = EntitiesConnection.CreateEntities())
                {
                    List <Source> rgSrcTraining = entities.Sources.Where(p => p.Name == strTrainingSrc).ToList();
                    List <Source> rgSrcTesting  = entities.Sources.Where(p => p.Name == strTestingSrc).ToList();

                    if (rgSrcTraining.Count == 0)
                    {
                        throw new Exception("Could not find the training source '" + strTrainingSrc + "'.");
                    }

                    if (rgSrcTesting.Count == 0)
                    {
                        throw new Exception("Could not find the tesing source '" + strTestingSrc + "'.");
                    }

                    DataConfigSetting dsName = config.Settings.Find("Output Dataset Name");
                    int    nSrcTestingCount  = rgSrcTesting[0].ImageCount.GetValueOrDefault();
                    int    nSrcTrainingCount = rgSrcTraining[0].ImageCount.GetValueOrDefault();
                    int    nSrcTotalCount    = nSrcTestingCount + nSrcTrainingCount;
                    double dfTestingPct      = (nSrcTrainingCount == 0) ? 0.0 : nSrcTestingCount / (double)nSrcTotalCount;

                    Dataset ds = new Dataset();
                    ds.ImageHeight      = rgSrcTraining[0].ImageHeight;
                    ds.ImageWidth       = rgSrcTraining[0].ImageWidth;
                    ds.Name             = strDsName;
                    ds.ImageEncoded     = rgSrcTesting[0].ImageEncoded;
                    ds.ImageChannels    = rgSrcTesting[0].ImageChannels;
                    ds.TestingPercent   = (decimal)dfTestingPct;
                    ds.TestingSourceID  = rgSrcTesting[0].ID;
                    ds.TestingTotal     = rgSrcTesting[0].ImageCount;
                    ds.TrainingSourceID = rgSrcTraining[0].ID;
                    ds.TrainingTotal    = rgSrcTraining[0].ImageCount;
                    ds.DatasetCreatorID = config.ID;
                    ds.DatasetGroupID   = 0;
                    ds.ModelGroupID     = 0;

                    entities.Datasets.Add(ds);
                    entities.SaveChanges();

                    nDatasetID = ds.ID;
                }

                m_factory.SetDatasetParameter(nDatasetID, "PixelSize", m_schema.CellSize.ToString());
                m_factory.SetDatasetParameter(nDatasetID, "AttributeCount", m_parser.DataDescriptions.Count.ToString());
                m_factory.SetDatasetParameter(nDatasetID, "AttributeCountHoriz", nCellHorizCount.ToString());
                m_factory.SetDatasetParameter(nDatasetID, "AttributeCountVert", nCellHorizCount.ToString());
            }
            catch (Exception excpt)
            {
                log.WriteLine("ERROR: " + excpt.Message);
            }
            finally
            {
                Properties.Settings.Default.CsvFile = strCsvFile;
                Properties.Settings.Default.Save();

                if (m_bCancel)
                {
                    log.WriteLine("ABORTED converting CSV data files.");
                }
                else
                {
                    log.WriteLine("Done converting CSV data files.");
                }

                if (m_bCancel)
                {
                    m_iprogress.OnCompleted(new CreateProgressArgs(1, 1, "ABORTED!", null, true));
                }
                else
                {
                    m_iprogress.OnCompleted(new CreateProgressArgs(1, "COMPLETED."));
                }
            }
        }
コード例 #6
0
        /// <summary>
        /// Create the dataset and load it into the database.
        /// </summary>
        /// <param name="nCreatorID">Specifies the creator ID.</param>
        /// <returns>On successful creation, <i>true</i> is returned, otherwise <i>false</i> is returned on abort.</returns>
        public bool LoadDatabase(int nCreatorID = 0)
        {
            try
            {
                int nIdx   = 0;
                int nTotal = 50000;

                reportProgress(nIdx, 0, "Loading database " + dataset_name + "...");

                DatasetFactory factory = new DatasetFactory();

                string strTrainSrc = dataset_name + ".training";
                int    nSrcId      = factory.GetSourceID(strTrainSrc);
                if (nSrcId != 0)
                {
                    factory.DeleteSourceData(nSrcId);
                }

                if (!loadFile(m_param.DataBatchFile1, strTrainSrc, nTotal, ref nIdx, m_log))
                {
                    return(false);
                }

                if (!loadFile(m_param.DataBatchFile2, strTrainSrc, nTotal, ref nIdx, m_log))
                {
                    return(false);
                }

                if (!loadFile(m_param.DataBatchFile3, strTrainSrc, nTotal, ref nIdx, m_log))
                {
                    return(false);
                }

                if (!loadFile(m_param.DataBatchFile4, strTrainSrc, nTotal, ref nIdx, m_log))
                {
                    return(false);
                }

                if (!loadFile(m_param.DataBatchFile5, strTrainSrc, nTotal, ref nIdx, m_log))
                {
                    return(false);
                }

                SourceDescriptor srcTrain = factory.LoadSource(strTrainSrc);
                m_factory.SaveImageMean(SimpleDatum.CalculateMean(m_log, m_rgImg.ToArray(), new WaitHandle[] { new ManualResetEvent(false) }), true, srcTrain.ID);

                m_rgImg = new List <SimpleDatum>();
                nIdx    = 0;
                nTotal  = 10000;

                string strTestSrc = dataset_name + ".testing";
                nSrcId = factory.GetSourceID(strTestSrc);
                if (nSrcId != 0)
                {
                    factory.DeleteSourceData(nSrcId);
                }

                if (!loadFile(m_param.TestBatchFile, strTestSrc, nTotal, ref nIdx, m_log))
                {
                    return(false);
                }

                SourceDescriptor srcTest = factory.LoadSource(strTestSrc);
                m_factory.SaveImageMean(SimpleDatum.CalculateMean(m_log, m_rgImg.ToArray(), new WaitHandle[] { new ManualResetEvent(false) }), true, srcTest.ID);

                DatasetDescriptor ds = new DatasetDescriptor(nCreatorID, dataset_name, null, null, srcTrain, srcTest, dataset_name, dataset_name + " Dataset");
                factory.AddDataset(ds);
                factory.UpdateDatasetCounts(ds.ID);

                return(true);
            }
            catch (Exception excpt)
            {
                throw excpt;
            }
            finally
            {
                if (OnCompleted != null)
                {
                    OnCompleted(this, new EventArgs());
                }
            }
        }
コード例 #7
0
        public void Create(DatasetConfiguration config, IXDatasetCreatorProgress progress)
        {
            string strTrainingBatchFile1 = Properties.Settings.Default.TrainingDataFile1;
            string strTrainingBatchFile2 = Properties.Settings.Default.TrainingDataFile2;
            string strTrainingBatchFile3 = Properties.Settings.Default.TrainingDataFile3;
            string strTrainingBatchFile4 = Properties.Settings.Default.TrainingDataFile4;
            string strTrainingBatchFile5 = Properties.Settings.Default.TrainingDataFile5;
            string strTestingBatchFile   = Properties.Settings.Default.TestingDataFile;
            string strDsName             = config.Name;
            string strTrainingSrc        = config.Name + ".training";
            string strTestingSrc         = config.Name + ".testing";
            int    nIdx   = 0;
            int    nTotal = 50000;

            m_bCancel   = false;
            m_iprogress = progress;
            m_factory.DeleteSources(strTrainingSrc, strTestingSrc);

            Log log = new Log("CIFAR Dataset Creator");

            log.OnWriteLine += new EventHandler <LogArg>(log_OnWriteLine);

            try
            {
                DataConfigSetting dsTrainingDataFile1 = config.Settings.Find("Training Data File 1");
                DataConfigSetting dsTrainingDataFile2 = config.Settings.Find("Training Data File 2");
                DataConfigSetting dsTrainingDataFile3 = config.Settings.Find("Training Data File 3");
                DataConfigSetting dsTrainingDataFile4 = config.Settings.Find("Training Data File 4");
                DataConfigSetting dsTrainingDataFile5 = config.Settings.Find("Training Data File 5");
                DataConfigSetting dsTestingDataFile   = config.Settings.Find("Testing Data File");

                strTrainingBatchFile1 = dsTrainingDataFile1.Value.ToString();
                if (strTrainingBatchFile1.Length == 0)
                {
                    throw new Exception("Training data file #1 name not specified!");
                }

                strTrainingBatchFile2 = dsTrainingDataFile2.Value.ToString();
                if (strTrainingBatchFile2.Length == 0)
                {
                    throw new Exception("Training data file #2 name not specified!");
                }

                strTrainingBatchFile3 = dsTrainingDataFile3.Value.ToString();
                if (strTrainingBatchFile3.Length == 0)
                {
                    throw new Exception("Training data file #3 name not specified!");
                }

                strTrainingBatchFile4 = dsTrainingDataFile4.Value.ToString();
                if (strTrainingBatchFile4.Length == 0)
                {
                    throw new Exception("Training data file #4 name not specified!");
                }

                strTrainingBatchFile5 = dsTrainingDataFile5.Value.ToString();
                if (strTrainingBatchFile5.Length == 0)
                {
                    throw new Exception("Training data file #5 name not specified!");
                }

                strTestingBatchFile = dsTestingDataFile.Value.ToString();
                if (strTestingBatchFile.Length == 0)
                {
                    throw new Exception("Testing data file name not specified!");
                }

                log.WriteLine("Loading the data files...");

                if (m_bCancel)
                {
                    return;
                }

                int nTrainSrcId = m_factory.AddSource(strTrainingSrc, 3, 32, 32, false, 0);
                m_factory.Open(nTrainSrcId, 500, Database.FORCE_LOAD.FROM_FILE); // use file based data.

                log.WriteLine("Deleting existing data from '" + m_factory.OpenSource.Name + "'.");
                m_factory.DeleteSourceData();

                if (!loadFile(log, dsTrainingDataFile1.Name, strTrainingBatchFile1, m_factory, nTotal, true, ref nIdx))
                {
                    return;
                }

                if (!loadFile(log, dsTrainingDataFile2.Name, strTrainingBatchFile2, m_factory, nTotal, true, ref nIdx))
                {
                    return;
                }

                if (!loadFile(log, dsTrainingDataFile3.Name, strTrainingBatchFile3, m_factory, nTotal, true, ref nIdx))
                {
                    return;
                }

                if (!loadFile(log, dsTrainingDataFile4.Name, strTrainingBatchFile4, m_factory, nTotal, true, ref nIdx))
                {
                    return;
                }

                if (!loadFile(log, dsTrainingDataFile5.Name, strTrainingBatchFile5, m_factory, nTotal, true, ref nIdx))
                {
                    return;
                }

                m_factory.UpdateSourceCounts();
                updateLabels(m_factory);

                log.WriteLine("Creating the image mean...");
                SimpleDatum dMean = SimpleDatum.CalculateMean(log, m_rgImages.ToArray(), new WaitHandle[] { new ManualResetEvent(false) });
                m_factory.PutRawImageMean(dMean, true);
                m_rgImages.Clear();

                m_factory.Close();

                int nTestSrcId = m_factory.AddSource(strTestingSrc, 3, 32, 32, false, 0);
                m_factory.Open(nTestSrcId, 500, Database.FORCE_LOAD.FROM_FILE); // use file based data.

                log.WriteLine("Deleting existing data from '" + m_factory.OpenSource.Name + "'.");
                m_factory.DeleteSourceData();

                nIdx   = 0;
                nTotal = 10000;

                if (!loadFile(log, dsTestingDataFile.Name, strTestingBatchFile, m_factory, nTotal, false, ref nIdx))
                {
                    return;
                }

                m_factory.CopyImageMean(strTrainingSrc, strTestingSrc);

                m_factory.UpdateSourceCounts();
                updateLabels(m_factory);
                m_factory.Close();

                log.WriteLine("Done loading training and testing data.");

                using (DNNEntities entities = EntitiesConnection.CreateEntities())
                {
                    List <Source> rgSrcTraining = entities.Sources.Where(p => p.Name == strTrainingSrc).ToList();
                    List <Source> rgSrcTesting  = entities.Sources.Where(p => p.Name == strTestingSrc).ToList();

                    if (rgSrcTraining.Count == 0)
                    {
                        throw new Exception("Could not find the training source '" + strTrainingSrc + "'.");
                    }

                    if (rgSrcTesting.Count == 0)
                    {
                        throw new Exception("Could not find the tesing source '" + strTestingSrc + "'.");
                    }

                    DataConfigSetting dsName = config.Settings.Find("Output Dataset Name");
                    int    nSrcTestingCount  = rgSrcTesting[0].ImageCount.GetValueOrDefault();
                    int    nSrcTrainingCount = rgSrcTraining[0].ImageCount.GetValueOrDefault();
                    int    nSrcTotalCount    = nSrcTestingCount + nSrcTrainingCount;
                    double dfTestingPct      = (nSrcTrainingCount == 0) ? 0.0 : nSrcTestingCount / (double)nSrcTotalCount;

                    Dataset ds = new Dataset();
                    ds.ImageHeight      = rgSrcTraining[0].ImageHeight;
                    ds.ImageWidth       = rgSrcTraining[0].ImageWidth;
                    ds.Name             = strDsName;
                    ds.ImageEncoded     = rgSrcTesting[0].ImageEncoded;
                    ds.ImageChannels    = rgSrcTesting[0].ImageChannels;
                    ds.TestingPercent   = (decimal)dfTestingPct;
                    ds.TestingSourceID  = rgSrcTesting[0].ID;
                    ds.TestingTotal     = rgSrcTesting[0].ImageCount;
                    ds.TrainingSourceID = rgSrcTraining[0].ID;
                    ds.TrainingTotal    = rgSrcTraining[0].ImageCount;
                    ds.DatasetCreatorID = config.ID;
                    ds.DatasetGroupID   = 0;
                    ds.ModelGroupID     = 0;

                    entities.Datasets.Add(ds);
                    entities.SaveChanges();
                }
            }
            catch (Exception excpt)
            {
                log.WriteLine("ERROR: " + excpt.Message);
            }
            finally
            {
                Properties.Settings.Default.TrainingDataFile1 = strTrainingBatchFile1;
                Properties.Settings.Default.TrainingDataFile2 = strTrainingBatchFile2;
                Properties.Settings.Default.TrainingDataFile3 = strTrainingBatchFile3;
                Properties.Settings.Default.TrainingDataFile4 = strTrainingBatchFile4;
                Properties.Settings.Default.TrainingDataFile5 = strTrainingBatchFile5;
                Properties.Settings.Default.TestingDataFile   = strTestingBatchFile;
                Properties.Settings.Default.Save();

                if (m_bCancel)
                {
                    log.WriteLine("ABORTED converting CIFAR data files.");
                }
                else
                {
                    log.WriteLine("Done converting CIFAR data files.");
                }

                if (m_bCancel)
                {
                    m_iprogress.OnCompleted(new CreateProgressArgs(nIdx, nTotal, "ABORTED!", null, true));
                }
                else
                {
                    m_iprogress.OnCompleted(new CreateProgressArgs(1, "COMPLETED."));
                }
            }
        }
コード例 #8
0
        private bool loadFile(DatasetFactory factory, List <Tuple <byte[], int> > rgData, int nC, int nH, int nW, string strSourceName, string strExportPath)
        {
            if (strExportPath != null)
            {
                strExportPath += strSourceName;

                if (!Directory.Exists(strExportPath))
                {
                    Directory.CreateDirectory(strExportPath);
                }
            }

            Stopwatch sw = new Stopwatch();

            reportProgress(0, 0, " Source: " + strSourceName);

            try
            {
                if (factory != null)
                {
                    int nSrcId = factory.AddSource(strSourceName, nC, nW, nH, false, 0, true);

                    factory.Open(nSrcId, 500, Database.FORCE_LOAD.NONE, m_log);
                    factory.DeleteSourceData();
                }

                // Storing to database;
                int    nLabel;
                byte[] rgPixels;

                Datum  datum     = new Datum(false, nC, nW, nH, -1, DateTime.MinValue, new List <byte>(), 0, false, -1);
                string strAction = (m_param.ExportToFile) ? "exporing" : "loading";

                reportProgress(0, rgData.Count, "  " + strAction + " a total of " + rgData.Count.ToString() + " items.");
                reportProgress(0, rgData.Count, "   (with rows: " + nH.ToString() + ", cols: " + nW.ToString() + ")");

                sw.Start();

                List <SimpleDatum> rgImg = new List <SimpleDatum>();

                FileStream   fsFileDesc = null;
                StreamWriter swFileDesc = null;
                if (m_param.ExportToFile)
                {
                    string strFile = strExportPath + "\\file_list.txt";
                    fsFileDesc = File.OpenWrite(strFile);
                    swFileDesc = new StreamWriter(fsFileDesc);
                }

                for (int i = 0; i < rgData.Count; i++)
                {
                    rgPixels = rgData[i].Item1;
                    nLabel   = rgData[i].Item2;

                    if (sw.Elapsed.TotalMilliseconds > 1000)
                    {
                        reportProgress(i, rgData.Count, " " + strAction + " data...");
                        sw.Restart();
                    }

                    datum.SetData(rgPixels, nLabel);

                    if (factory != null)
                    {
                        factory.PutRawImageCache(i, datum, 5);
                    }
                    else if (strExportPath != null)
                    {
                        saveToFile(strExportPath, i, datum, swFileDesc);
                    }

                    rgImg.Add(new SimpleDatum(datum));

                    if (m_evtCancel.WaitOne(0))
                    {
                        return(false);
                    }
                }

                if (swFileDesc != null)
                {
                    swFileDesc.Flush();
                    swFileDesc.Close();
                    swFileDesc.Dispose();

                    fsFileDesc.Close();
                    fsFileDesc.Dispose();
                }

                if (factory != null)
                {
                    factory.ClearImageCache(true);
                    factory.UpdateSourceCounts();
                    factory.SaveImageMean(SimpleDatum.CalculateMean(m_log, rgImg.ToArray(), new WaitHandle[] { new ManualResetEvent(false) }), true);
                }

                reportProgress(rgData.Count, rgData.Count, " " + strAction + " completed.");
            }
            finally
            {
            }

            return(true);
        }
コード例 #9
0
        public uint ConvertData(string strImageFile, string strLabelFile, string strDBPath, string strDBPathMean, bool bCreateImgMean, bool bGetItemCountOnly = false, int nChannels = 1)
        {
            string             strExt;
            List <SimpleDatum> rgImg = new List <SimpleDatum>();

            strExt = Path.GetExtension(strImageFile).ToLower();
            if (strExt == ".gz")
            {
                m_log.WriteLine("Unpacking '" + strImageFile + "'...");
                strImageFile = expandFile(strImageFile);
            }

            strExt = Path.GetExtension(strLabelFile).ToLower();
            if (strExt == ".gz")
            {
                m_log.WriteLine("Unpacking '" + strLabelFile + "'...");
                strLabelFile = expandFile(strLabelFile);
            }

            BinaryFile image_file = new BinaryFile(strImageFile);
            BinaryFile label_file = new BinaryFile(strLabelFile);

            try
            {
                uint magicImg = image_file.ReadUInt32();
                uint magicLbl = label_file.ReadUInt32();

                if (magicImg != 2051)
                {
                    if (m_log != null)
                    {
                        m_log.FAIL("Incorrect image file magic.");
                    }

                    if (OnLoadError != null)
                    {
                        OnLoadError(this, new LoadErrorArgs("Incorrect image file magic."));
                    }
                }

                if (magicLbl != 2049)
                {
                    if (m_log != null)
                    {
                        m_log.FAIL("Incorrect label file magic.");
                    }

                    if (OnLoadError != null)
                    {
                        OnLoadError(this, new LoadErrorArgs("Incorrect label file magic."));
                    }
                }

                uint num_items  = image_file.ReadUInt32();
                uint num_labels = label_file.ReadUInt32();

                if (num_items != num_labels)
                {
                    if (m_log != null)
                    {
                        m_log.FAIL("The number of items must equal the number of labels.");
                    }

                    throw new Exception("The number of items must equal the number of labels." + Environment.NewLine + "  Label File: '" + strLabelFile + Environment.NewLine + "  Image File: '" + strImageFile + "'.");
                }

                if (bGetItemCountOnly)
                {
                    return(num_items);
                }

                uint rows = image_file.ReadUInt32();
                uint cols = image_file.ReadUInt32();

                int nSrcId = m_factory.AddSource(strDBPath, nChannels, (int)cols, (int)rows, false, 0, true);
                m_factory.Open(nSrcId, 500, Database.FORCE_LOAD.FROM_FILE); // use file based data.
                m_factory.DeleteSourceData();

                // Storing to db
                byte[] rgLabel;
                byte[] rgPixels;

                Datum datum = new Datum(false, nChannels, (int)cols, (int)rows);

                if (m_log != null)
                {
                    m_log.WriteHeader("LOADING " + strDBPath + " items.");
                    m_log.WriteLine("A total of " + num_items.ToString() + " items.");
                    m_log.WriteLine("Rows: " + rows.ToString() + " Cols: " + cols.ToString());
                }

                if (OnLoadStart != null)
                {
                    OnLoadStart(this, new LoadStartArgs((int)num_items));
                }

                for (int item_id = 0; item_id < num_items; item_id++)
                {
                    rgPixels = image_file.ReadBytes((int)(rows * cols));
                    rgLabel  = label_file.ReadBytes(1);

                    List <byte> rgData = new List <byte>(rgPixels);

                    if (nChannels == 3)
                    {
                        rgData.AddRange(new List <byte>(rgPixels));
                        rgData.AddRange(new List <byte>(rgPixels));
                    }

                    datum.SetData(rgData, (int)rgLabel[0]);

                    if (m_bmpTargetOverlay != null)
                    {
                        datum = createTargetOverlay(datum);
                    }

                    m_factory.PutRawImageCache(item_id, datum);

                    if (bCreateImgMean)
                    {
                        rgImg.Add(new SimpleDatum(datum));
                    }

                    if ((item_id % 1000) == 0)
                    {
                        if (m_log != null)
                        {
                            m_log.WriteLine("Loaded " + item_id.ToString("N") + " items...");
                            m_log.Progress = (double)item_id / (double)num_items;
                        }

                        if (OnLoadProgress != null)
                        {
                            LoadArgs args = new LoadArgs(item_id);
                            OnLoadProgress(this, args);

                            if (args.Cancel)
                            {
                                break;
                            }
                        }
                    }
                }

                m_factory.ClearImageCache(true);
                m_factory.UpdateSourceCounts();

                if (bCreateImgMean)
                {
                    if (strDBPath != strDBPathMean)
                    {
                        m_factory.CopyImageMean(strDBPathMean, strDBPath);
                    }
                    else
                    {
                        m_log.WriteLine("Creating image mean...");
                        SimpleDatum dMean = SimpleDatum.CalculateMean(m_log, rgImg.ToArray(), new WaitHandle[] { new ManualResetEvent(false) });
                        m_factory.PutRawImageMean(dMean, true);
                    }
                }

                if (OnLoadProgress != null)
                {
                    LoadArgs args = new LoadArgs((int)num_items);
                    OnLoadProgress(this, args);
                }

                return(num_items);
            }
            finally
            {
                image_file.Dispose();
                label_file.Dispose();
            }
        }
コード例 #10
0
        private bool loadFile(DatasetFactory factory, string strImagesFile, string strLabelsFile, string strSourceName, string strExportPath)
        {
            if (strExportPath != null)
            {
                strExportPath += strSourceName;

                if (!Directory.Exists(strExportPath))
                {
                    Directory.CreateDirectory(strExportPath);
                }
            }

            Stopwatch sw = new Stopwatch();

            reportProgress(0, 0, " Source: " + strSourceName);
            reportProgress(0, 0, "  loading " + strImagesFile + "...");

            BinaryFile image_file = new BinaryFile(strImagesFile);
            BinaryFile label_file = new BinaryFile(strLabelsFile);

            try
            {
                // Verify the files
                uint magicImg = image_file.ReadUInt32();
                uint magicLbl = label_file.ReadUInt32();

                if (magicImg != 2051)
                {
                    throw new Exception("Incorrect image file magic.");
                }

                if (magicLbl != 2049)
                {
                    throw new Exception("Incorrect label file magic.");
                }

                uint num_items  = image_file.ReadUInt32();
                uint num_labels = label_file.ReadUInt32();

                if (num_items != num_labels)
                {
                    throw new Exception("The number of items must be equal to the number of labels!");
                }


                // Add the data source to the database.
                uint rows      = image_file.ReadUInt32();
                uint cols      = image_file.ReadUInt32();
                int  nChannels = 1; // black and white

                if (factory != null)
                {
                    int nSrcId = factory.AddSource(strSourceName, nChannels, (int)cols, (int)rows, false, 0, true);

                    factory.Open(nSrcId, 500, Database.FORCE_LOAD.NONE, m_log);
                    factory.DeleteSourceData();
                }

                // Storing to database;
                byte[] rgLabel;
                byte[] rgPixels;

                Datum  datum     = new Datum(false, nChannels, (int)cols, (int)rows, -1, DateTime.MinValue, new List <byte>(), 0, false, -1);
                string strAction = (m_param.ExportToFile) ? "exporing" : "loading";

                reportProgress(0, (int)num_items, "  " + strAction + " a total of " + num_items.ToString() + " items.");
                reportProgress(0, (int)num_items, "   (with rows: " + rows.ToString() + ", cols: " + cols.ToString() + ")");

                sw.Start();

                List <SimpleDatum> rgImg = new List <SimpleDatum>();

                FileStream   fsFileDesc = null;
                StreamWriter swFileDesc = null;
                if (m_param.ExportToFile)
                {
                    string strFile = strExportPath + "\\file_list.txt";
                    fsFileDesc = File.OpenWrite(strFile);
                    swFileDesc = new StreamWriter(fsFileDesc);
                }

                for (int i = 0; i < num_items; i++)
                {
                    rgPixels = image_file.ReadBytes((int)(rows * cols));
                    rgLabel  = label_file.ReadBytes(1);

                    if (sw.Elapsed.TotalMilliseconds > 1000)
                    {
                        reportProgress(i, (int)num_items, " " + strAction + " data...");
                        sw.Restart();
                    }

                    datum.SetData(rgPixels.ToList(), (int)rgLabel[0]);

                    if (factory != null)
                    {
                        factory.PutRawImageCache(i, datum);
                    }
                    else if (strExportPath != null)
                    {
                        saveToFile(strExportPath, i, datum, swFileDesc);
                    }

                    rgImg.Add(new SimpleDatum(datum));

                    if (m_evtCancel.WaitOne(0))
                    {
                        return(false);
                    }
                }

                if (swFileDesc != null)
                {
                    swFileDesc.Flush();
                    swFileDesc.Close();
                    swFileDesc.Dispose();

                    fsFileDesc.Close();
                    fsFileDesc.Dispose();
                }

                if (factory != null)
                {
                    factory.ClearImageCashe(true);
                    factory.UpdateSourceCounts();
                    factory.SaveImageMean(SimpleDatum.CalculateMean(m_log, rgImg.ToArray(), new WaitHandle[] { new ManualResetEvent(false) }), true);
                }

                reportProgress((int)num_items, (int)num_items, " " + strAction + " completed.");
            }
            finally
            {
                image_file.Dispose();
                label_file.Dispose();
            }

            return(true);
        }