コード例 #1
0
 public MetricSimilarity(MelodySequence seq, IMetric metric, SimilarityType type = SimilarityType.Cosine)
 {
     this.metrics = new IMetric[]{metric};
     this.target = seq.ToArray();
     this.type = type;
     this.target_metrics = new Dictionary<Pair, float>[] { this.metrics[0].Generate(this.target) };
 }
コード例 #2
0
 public MetricSimilarity(MelodySequence seq, IMetric[] metrics, SimilarityType type = SimilarityType.Cosine)
 {
     this.metrics = metrics;
     this.target = seq.ToArray();
     target_metrics = new Dictionary<Pair, float>[metrics.Length];
     this.type = type;
     for (int i = 0; i < metrics.Length; i++)
         target_metrics[i] = this.metrics[i].Generate(this.target);
 }
コード例 #3
0
        private void calculateButton_Click(object sender, EventArgs e)
        {
            string[] items = new string[fileListBox.Items.Count];
            for (int i = 0; i < items.Length; i++)
            {
                items[i] = fileListBox.Items[i].ToString();
            }
            SimilarityType type = SimilarityType.Euclidean;

            Enum.TryParse <SimilarityType>(similarityTypeComboBox.SelectedValue.ToString(), out type);
            resultTextBox.Text = Ensemble.Similarity(type, items).ToString("0.00000");
        }
コード例 #4
0
        public static MetricSimilarity GenerateMetricSimilarityMulti(IEnumerable<Composition> comps, IMetric[] metrics, SimilarityType type = SimilarityType.Cosine)
        {
            List<Note> notes = new List<Note>();
            foreach(var comp in comps)
            {
                if (comp.Tracks.Count < 1)
                    continue;
                var seq = comp.Tracks[0].GetMainSequence() as MelodySequence;
                foreach (var n in seq.Notes)
                    notes.Add(n);
            }

            return new MetricSimilarity(new MelodySequence(notes), metrics, type);
        }
コード例 #5
0
ファイル: EnumExtensions.cs プロジェクト: kathirv/test-repo
        public static string GetSimilarityTypeDescription(this SimilarityType methodType)
        {
            // get the field
            var field            = methodType.GetType().GetField(methodType.ToString());
            var customAttributes = field.GetCustomAttributes(typeof(DescriptionAttribute), false);

            if (customAttributes.Count() > 0)
            {
                return((customAttributes.ElementAt(0) as DescriptionAttribute).Description);
            }
            else
            {
                return(methodType.ToString());
            }
        }
コード例 #6
0
        public void ShowModelInfo()
        {
            Logger.WriteLine($"Encoder embedding dim: '{EncoderEmbeddingDim}'");
            Logger.WriteLine($"Decoder embedding dim: '{DecoderEmbeddingDim}'");
            Logger.WriteLine($"Encoder layer depth: '{EncoderLayerDepth}'");
            Logger.WriteLine($"Decoder layer depth: '{DecoderLayerDepth}'");
            Logger.WriteLine($"Encoder type: '{EncoderType}'");
            Logger.WriteLine($"Decoder type: '{DecoderType}'");
            Logger.WriteLine($"Hidden layer dim: '{HiddenDim}'");
            Logger.WriteLine($"Enable segment embeddings: '{EnableSegmentEmbeddings}'");
            Logger.WriteLine($"Enable shared embeddings: '{SharedEmbeddings}'");
            Logger.WriteLine($"Enable tag embeddings: '{EnableTagEmbeddings}'");
            Logger.WriteLine($"Multi-head size: '{MultiHeadNum}'");
            Logger.WriteLine($"Pointer Generator: '{PointerGenerator}'");


            if (!SimilarityType.IsNullOrEmpty())
            {
                Logger.WriteLine($"Similarity Type: '{SimilarityType}'");
            }

            if (SrcVocab != null)
            {
                Logger.WriteLine($"Source vocabulary size: '{SrcVocab.Count}'");
            }

            if (TgtVocab != null)
            {
                Logger.WriteLine($"Target vocabulary size: '{TgtVocab.Count}'");
            }

            if (ClsVocabs != null)
            {
                Logger.WriteLine($"The number of CLS vocabularies: '{ClsVocabs.Count}' ");
                for (int i = 0; i < ClsVocabs.Count; i++)
                {
                    Logger.WriteLine($"CLS vocabulary {i} size: {ClsVocabs[ i ].Count}");
                }
            }
        }
コード例 #7
0
        public static double Similarity(SimilarityType type, params string[] files)
        {
            REngine.SetEnvironmentVariables();
            // There are several options to initialize the engine, but by default the following suffice:
            REngine engine = REngine.GetInstance();

            engine.Evaluate("library(clue)");

            string ensemble_statement = "ensemble = cl_ensemble(";

            for (int i = 0; i < files.Length; i++)
            {
                string statement = string.Empty;
                statement += $"array = read.csv(\"{files[i].Replace("\\", "\\\\")}\", header = FALSE)$V1\r\n";
                statement += "if(is.na(array[1])){";
                statement += $"  P{i} = as.cl_partition(read.csv(\"{files[i].Replace("\\", "\\\\")}\", header = TRUE)$V1)";
                statement += "}else{";
                statement += $"  P{i} = as.cl_partition(array)";
                statement += "}";
                engine.Evaluate(statement);
                ensemble_statement += $"P{i},";
            }
            ensemble_statement = ensemble_statement.TrimEnd(new char[] { ',' }) + ")";
            engine.Evaluate(ensemble_statement);
            engine.Evaluate("ag=cl_agreement(ensemble)");
            var ag = engine.Evaluate("ag");

            Console.WriteLine(ag.ToString());
            var    mean   = engine.Evaluate($"mean(cl_agreement(ensemble, method = \"{type}\"))").AsVector();
            double result = (double)mean[0];

            // you should always dispose of the REngine properly.
            // After disposing of the engine, you cannot reinitialize nor reuse it
            //engine.Dispose();
            return(result);
        }
コード例 #8
0
        private async Task <List <TrademarkDto> > ParseServerResponse(string response, SimilarityType type)
        {
            var tradeMarkCollection = new List <TrademarkDto>();

            if (!string.IsNullOrEmpty(response))
            {
                var results = JsonConvert.DeserializeObject <dynamic>(response);
                foreach (var result in results.results)
                {
                    int.TryParse(result.barcode.ToString(), out int supervisorBarcode);
                    var protDoc = _executor.GetQuery <GetProtectionDocsByBarcodeQuery>()
                                  .Process(q => q.Execute(supervisorBarcode));

                    if (protDoc != null)
                    {
                        var tdmDet = _mapper.Map <TrademarkDto>(protDoc);
                        switch (type)
                        {
                        case SimilarityType.Image:
                            tdmDet.ImageSimilarity = result.similarity;
                            break;

                        case SimilarityType.Phonetic:
                            tdmDet.PhonSimilarity = result.similarity;
                            break;

                        case SimilarityType.Semantic:
                            tdmDet.SemSimilarity = result.similarity;
                            break;
                        }

                        byte[] responseImage = protDoc.Image;

                        tdmDet.PreviewImage =
                            responseImage != null ? $"data:image/png;base64,{Convert.ToBase64String(responseImage)}" : null;
                        tradeMarkCollection.Add(tdmDet);
                    }
                }
            }

            return(tradeMarkCollection);
        }