コード例 #1
0
ファイル: SmoothFloat.cs プロジェクト: PushyPixels/EditorXR
        /// <summary>
        /// Takes in a new raw value to determine the smoothed value
        /// </summary>
        /// <param name="newValue">The 'raw' up to date value we are tracking</param>
        /// <param name="timeSlice">How much time has passed since the last update</param>
        public void Update(float newValue, float timeSlice)
        {
            // Automatically reset, if we have not done so initially
            if (m_CurrentSampleIndex == -1)
            {
                Reset(newValue);
                return;
            }

            if (timeSlice <= 0.0f)
            {
                return;
            }

            var currentOffset = newValue - m_LastValue;

            m_LastValue = newValue;

            // Add new data to the current sample
            m_Samples[m_CurrentSampleIndex].offset += currentOffset;
            m_Samples[m_CurrentSampleIndex].time   += timeSlice;

            // Accumulate and generate our new smooth, predicted float values
            var combinedSample = new Sample();
            var sampleIndex    = m_CurrentSampleIndex;

            while (combinedSample.time < k_Period)
            {
                var overTimeScalar = Mathf.Clamp01((k_Period - combinedSample.time) / m_Samples[sampleIndex].time);

                combinedSample.Accumulate(ref m_Samples[sampleIndex], overTimeScalar);
                sampleIndex = (sampleIndex + 1) % k_SampleLength;
            }

            var oldestValue = combinedSample.value;

            // Another accumulation step to weight the most recent values stronger for prediction
            sampleIndex = m_CurrentSampleIndex;
            while (combinedSample.time < k_PredictedPeriod) // combinedSample's time is altered in the Accumulate call below
            {
                var overTimeScalar = Mathf.Clamp01((k_PredictedPeriod - combinedSample.time) / m_Samples[sampleIndex].time);
                combinedSample.Accumulate(ref m_Samples[sampleIndex], overTimeScalar); // adjusts sample's time+offset values
                sampleIndex = (sampleIndex + 1) % k_SampleLength;
            }

            // Our combo sample is ready to be used to generate smooth output
            speed = combinedSample.offset / combinedSample.time;

            predictedValue = oldestValue + speed * k_SamplePeriod;

            // If the current sample is full, clear out the oldest sample and make that the new current sample
            if (m_Samples[m_CurrentSampleIndex].time < k_SamplePeriod)
            {
                return;
            }

            m_Samples[m_CurrentSampleIndex].value = newValue;
            m_CurrentSampleIndex            = (m_CurrentSampleIndex - 1 + k_SampleLength) % k_SampleLength;
            m_Samples[m_CurrentSampleIndex] = new Sample();
        }
コード例 #2
0
        /// <summary>
        /// Takes in a new pose to determine new physics values
        /// </summary>
        /// <param name="newPosition">The up to date position of the physics tracker</param>
        /// <param name="newRotation">The up to date orientation of the physics tracker</param>
        /// <param name="timeSlice">How much time has passed since the last pose update</param>
        public void Update(Vector3 newPosition, Quaternion newRotation, float timeSlice)
        {
            // Automatically reset, if we have not done so initially
            if (m_CurrentSampleIndex == -1)
            {
                Reset(newPosition, newRotation, Vector3.zero, Vector3.zero);
                return;
            }

            if (timeSlice <= 0.0f)
            {
                return;
            }

            // First get single-frame offset data that we will then feed into our smoothing and prediction steps
            // We use different techniques that are well suited for direction and 'speed', and then recombine to velocity later
            var currentOffset   = newPosition - m_LastOffsetPosition;
            var currentDistance = currentOffset.magnitude;

            m_LastOffsetPosition = newPosition;

            var activeDirection = newPosition - m_LastDirectionPosition;

            // We skip extremely small deltas and wait for more reliable changes in direction
            if (activeDirection.magnitude < k_MinOffset)
            {
                activeDirection = Direction;
            }
            else
            {
                activeDirection.Normalize();
                m_LastDirectionPosition = newPosition;
            }

            // Update angular data in the same fashion
            var   rotationOffset = newRotation * Quaternion.Inverse(m_LastRotation);
            float currentAngle;
            var   activeAxis = Vector3.zero;

            rotationOffset.ToAngleAxis(out currentAngle, out activeAxis);

            // Extremely small deltas make for a wildly unpredictable axis
            if (currentAngle < k_MinAngle)
            {
                currentAngle = 0.0f;
                activeAxis   = AngularAxis;
            }
            else
            {
                m_LastRotation = newRotation;
            }

            // We let strong rotations have more of an effect on the axis of rotation than weak ones
            var axisDistance = 1.0f + (currentAngle / 90.0f);

            // Add new data to the current sample
            m_Samples[m_CurrentSampleIndex].distance += currentDistance;
            m_Samples[m_CurrentSampleIndex].offset   += currentOffset;
            m_Samples[m_CurrentSampleIndex].angle    += currentAngle;
            m_Samples[m_CurrentSampleIndex].time     += timeSlice;

            // The axis can flip direction, which during this accumulation step can result in values getting small and unpredictable
            // We manually make sure the axis are always adding direction, instead of taking away
            if (Vector3.Dot(activeAxis, m_Samples[m_CurrentSampleIndex].axisOffset) < 0)
            {
                m_Samples[m_CurrentSampleIndex].axisOffset += -activeAxis * axisDistance;
            }
            else
            {
                m_Samples[m_CurrentSampleIndex].axisOffset += activeAxis * axisDistance;
            }

            // Accumulate and generate our new smooth, predicted physics values
            var combinedSample = new Sample();
            var sampleIndex    = m_CurrentSampleIndex;

            while (combinedSample.time < k_Period)
            {
                var overTimeScalar = Mathf.Clamp01((k_Period - combinedSample.time) / m_Samples[sampleIndex].time);

                combinedSample.Accumulate(ref m_Samples[sampleIndex], overTimeScalar, activeDirection, activeAxis);
                sampleIndex = (sampleIndex + 1) % k_SampleLength;
            }

            var oldestSpeed        = combinedSample.speed;
            var oldestAngularSpeed = combinedSample.angularSpeed;

            // Another accumulation step to weight the most recent values stronger for prediction
            sampleIndex = m_CurrentSampleIndex;
            while (combinedSample.time < k_PredictedPeriod)
            {
                var overTimeScalar = Mathf.Clamp01((k_PredictedPeriod - combinedSample.time) / m_Samples[sampleIndex].time);

                combinedSample.Accumulate(ref m_Samples[sampleIndex], overTimeScalar, activeDirection, activeAxis);
                sampleIndex = (sampleIndex + 1) % k_SampleLength;
            }

            // Our combo sample is ready to be used to generate physics output
            Speed = combinedSample.distance / k_PredictedPeriod;

            // Try to use the weighted combination of offsets.
            if (combinedSample.offset.magnitude > k_MinLength)
            {
                Direction = combinedSample.offset.normalized;
            }
            else
            {
                var directionVsActive = Vector3.Dot(Direction, activeDirection);
                if (directionVsActive < 0.0f)
                {
                    directionVsActive = -directionVsActive;
                    Direction         = -Direction;
                }
                Direction = Vector3.Lerp(activeDirection, Direction, directionVsActive).normalized;
            }
            Velocity = Direction * Speed;

            AngularSpeed = combinedSample.angle / k_PredictedPeriod;

            // Try to use the weighted combination of angles
            // We do one additional smoothing step here - this data is simply noisier than position
            if (combinedSample.axisOffset.magnitude > k_MinLength)
            {
                activeAxis = combinedSample.axisOffset.normalized;
            }

            var axisVsActive = Vector3.Dot(AngularAxis, activeAxis);

            if (axisVsActive < 0.0f)
            {
                axisVsActive = -axisVsActive;
                AngularAxis  = -AngularAxis;
            }
            AngularAxis     = Vector3.Lerp(activeAxis, AngularAxis, axisVsActive).normalized;
            AngularVelocity = AngularAxis * AngularSpeed * Mathf.Deg2Rad;

            // We compare the newest and oldest velocity samples to get the new acceleration
            var speedDelta        = (Speed - oldestSpeed);
            var angularSpeedDelta = (AngularSpeed - oldestAngularSpeed);

            AccelerationStrength = speedDelta / k_Period;
            Acceleration         = AccelerationStrength * Direction;

            AngularAccelerationStrength = angularSpeedDelta / k_Period;
            AngularAcceleration         = AngularAxis * AngularAccelerationStrength * Mathf.Deg2Rad;

            // If the current sample is full, clear out the oldest sample and make that the new current sample
            if (m_Samples[m_CurrentSampleIndex].time < k_SamplePeriod)
            {
                return;
            }

            // We record the last speed value before we switch to a new sample, for acceleration sampling
            m_Samples[m_CurrentSampleIndex].speed        = Speed;
            m_Samples[m_CurrentSampleIndex].angularSpeed = AngularSpeed;
            m_CurrentSampleIndex            = ((m_CurrentSampleIndex - 1) + k_SampleLength) % k_SampleLength;
            m_Samples[m_CurrentSampleIndex] = new Sample();
        }