} // end MoveLinear() private void MoveAngular(float pTimestep) { /* * private Vector3 m_angularMotorDirection = Vector3.Zero; // angular velocity requested by LSL motor * private int m_angularMotorApply = 0; // application frame counter * private float m_angularMotorVelocity = 0; // current angular motor velocity (ramps up and down) * private float m_angularMotorTimescale = 0; // motor angular velocity ramp up rate * private float m_angularMotorDecayTimescale = 0; // motor angular velocity decay rate * private Vector3 m_angularFrictionTimescale = Vector3.Zero; // body angular velocity decay rate * private Vector3 m_lastAngularVelocity = Vector3.Zero; // what was last applied to body */ // Get what the body is doing, this includes 'external' influences SafeNativeMethods.Vector3 angularVelocity = SafeNativeMethods.BodyGetAngularVel(Body); // Vector3 angularVelocity = Vector3.Zero; if (m_angularMotorApply > 0) { // ramp up to new value // current velocity += error / (time to get there / step interval) // requested speed - last motor speed m_angularMotorVelocity.X += (m_angularMotorDirection.X - m_angularMotorVelocity.X) / (m_angularMotorTimescale / pTimestep); m_angularMotorVelocity.Y += (m_angularMotorDirection.Y - m_angularMotorVelocity.Y) / (m_angularMotorTimescale / pTimestep); m_angularMotorVelocity.Z += (m_angularMotorDirection.Z - m_angularMotorVelocity.Z) / (m_angularMotorTimescale / pTimestep); m_angularMotorApply--; // This is done so that if script request rate is less than phys frame rate the expected // velocity may still be acheived. } else { // no motor recently applied, keep the body velocity /* m_angularMotorVelocity.X = angularVelocity.X; * m_angularMotorVelocity.Y = angularVelocity.Y; * m_angularMotorVelocity.Z = angularVelocity.Z; */ // and decay the velocity m_angularMotorVelocity -= m_angularMotorVelocity / (m_angularMotorDecayTimescale / pTimestep); } // end motor section // Vertical attractor section Vector3 vertattr = Vector3.Zero; if (m_verticalAttractionTimescale < 300) { float VAservo = 0.2f / (m_verticalAttractionTimescale * pTimestep); // get present body rotation SafeNativeMethods.Quaternion rot = SafeNativeMethods.BodyGetQuaternion(Body); Quaternion rotq = new Quaternion(rot.X, rot.Y, rot.Z, rot.W); // make a vector pointing up Vector3 verterr = Vector3.Zero; verterr.Z = 1.0f; // rotate it to Body Angle verterr = verterr * rotq; // verterr.X and .Y are the World error ammounts. They are 0 when there is no error (Vehicle Body is 'vertical'), and .Z will be 1. // As the body leans to its side |.X| will increase to 1 and .Z fall to 0. As body inverts |.X| will fall and .Z will go // negative. Similar for tilt and |.Y|. .X and .Y must be modulated to prevent a stable inverted body. if (verterr.Z < 0.0f) { verterr.X = 2.0f - verterr.X; verterr.Y = 2.0f - verterr.Y; } // Error is 0 (no error) to +/- 2 (max error) // scale it by VAservo verterr = verterr * VAservo; //if (frcount == 0) Console.WriteLine("VAerr=" + verterr); // As the body rotates around the X axis, then verterr.Y increases; Rotated around Y then .X increases, so // Change Body angular velocity X based on Y, and Y based on X. Z is not changed. vertattr.X = verterr.Y; vertattr.Y = -verterr.X; vertattr.Z = 0f; // scaling appears better usingsquare-law float bounce = 1.0f - (m_verticalAttractionEfficiency * m_verticalAttractionEfficiency); vertattr.X += bounce * angularVelocity.X; vertattr.Y += bounce * angularVelocity.Y; } // else vertical attractor is off // m_lastVertAttractor = vertattr; // Bank section tba // Deflection section tba // Sum velocities m_lastAngularVelocity = m_angularMotorVelocity + vertattr; // + bank + deflection if ((m_flags & (VehicleFlag.NO_DEFLECTION_UP)) != 0) { m_lastAngularVelocity.X = 0; m_lastAngularVelocity.Y = 0; } if (!m_lastAngularVelocity.ApproxEquals(Vector3.Zero, 0.01f)) { if (!SafeNativeMethods.BodyIsEnabled(Body)) { SafeNativeMethods.BodyEnable(Body); } } else { m_lastAngularVelocity = Vector3.Zero; // Reduce small value to zero. } // apply friction Vector3 decayamount = Vector3.One / (m_angularFrictionTimescale / pTimestep); m_lastAngularVelocity -= m_lastAngularVelocity * decayamount; // Apply to the body SafeNativeMethods.BodySetAngularVel(Body, m_lastAngularVelocity.X, m_lastAngularVelocity.Y, m_lastAngularVelocity.Z); } //end MoveAngular
}// end Step private void MoveLinear(float pTimestep, OdeScene _pParentScene) { if (!m_linearMotorDirection.ApproxEquals(Vector3.Zero, 0.01f)) // requested m_linearMotorDirection is significant { if (!SafeNativeMethods.BodyIsEnabled(Body)) { SafeNativeMethods.BodyEnable(Body); } // add drive to body Vector3 addAmount = m_linearMotorDirection / (m_linearMotorTimescale / pTimestep); m_lastLinearVelocityVector += (addAmount * 10); // lastLinearVelocityVector is the current body velocity vector? // This will work temporarily, but we really need to compare speed on an axis // KF: Limit body velocity to applied velocity? if (Math.Abs(m_lastLinearVelocityVector.X) > Math.Abs(m_linearMotorDirectionLASTSET.X)) { m_lastLinearVelocityVector.X = m_linearMotorDirectionLASTSET.X; } if (Math.Abs(m_lastLinearVelocityVector.Y) > Math.Abs(m_linearMotorDirectionLASTSET.Y)) { m_lastLinearVelocityVector.Y = m_linearMotorDirectionLASTSET.Y; } if (Math.Abs(m_lastLinearVelocityVector.Z) > Math.Abs(m_linearMotorDirectionLASTSET.Z)) { m_lastLinearVelocityVector.Z = m_linearMotorDirectionLASTSET.Z; } // decay applied velocity Vector3 decayfraction = ((Vector3.One / (m_linearMotorDecayTimescale / pTimestep))); //Console.WriteLine("decay: " + decayfraction); m_linearMotorDirection -= m_linearMotorDirection * decayfraction * 0.5f; //Console.WriteLine("actual: " + m_linearMotorDirection); } else { // requested is not significant // if what remains of applied is small, zero it. if (m_lastLinearVelocityVector.ApproxEquals(Vector3.Zero, 0.01f)) { m_lastLinearVelocityVector = Vector3.Zero; } } // convert requested object velocity to world-referenced vector m_dir = m_lastLinearVelocityVector; SafeNativeMethods.Quaternion rot = SafeNativeMethods.BodyGetQuaternion(Body); Quaternion rotq = new Quaternion(rot.X, rot.Y, rot.Z, rot.W); // rotq = rotation of object m_dir *= rotq; // apply obj rotation to velocity vector // add Gravity andBuoyancy // KF: So far I have found no good method to combine a script-requested // .Z velocity and gravity. Therefore only 0g will used script-requested // .Z velocity. >0g (m_VehicleBuoyancy < 1) will used modified gravity only. Vector3 grav = Vector3.Zero; // There is some gravity, make a gravity force vector // that is applied after object velocity. SafeNativeMethods.Mass objMass; SafeNativeMethods.BodyGetMass(Body, out objMass); // m_VehicleBuoyancy: -1=2g; 0=1g; 1=0g; grav.Z = _pParentScene.gravityz * objMass.mass * (1f - m_VehicleBuoyancy); // Preserve the current Z velocity SafeNativeMethods.Vector3 vel_now = SafeNativeMethods.BodyGetLinearVel(Body); m_dir.Z = vel_now.Z; // Preserve the accumulated falling velocity SafeNativeMethods.Vector3 pos = SafeNativeMethods.BodyGetPosition(Body); // Vector3 accel = new Vector3(-(m_dir.X - m_lastLinearVelocityVector.X / 0.1f), -(m_dir.Y - m_lastLinearVelocityVector.Y / 0.1f), m_dir.Z - m_lastLinearVelocityVector.Z / 0.1f); Vector3 posChange = new Vector3(); posChange.X = pos.X - m_lastPositionVector.X; posChange.Y = pos.Y - m_lastPositionVector.Y; posChange.Z = pos.Z - m_lastPositionVector.Z; double Zchange = Math.Abs(posChange.Z); if (m_BlockingEndPoint != Vector3.Zero) { if (pos.X >= (m_BlockingEndPoint.X - (float)1)) { pos.X -= posChange.X + 1; SafeNativeMethods.BodySetPosition(Body, pos.X, pos.Y, pos.Z); } if (pos.Y >= (m_BlockingEndPoint.Y - (float)1)) { pos.Y -= posChange.Y + 1; SafeNativeMethods.BodySetPosition(Body, pos.X, pos.Y, pos.Z); } if (pos.Z >= (m_BlockingEndPoint.Z - (float)1)) { pos.Z -= posChange.Z + 1; SafeNativeMethods.BodySetPosition(Body, pos.X, pos.Y, pos.Z); } if (pos.X <= 0) { pos.X += posChange.X + 1; SafeNativeMethods.BodySetPosition(Body, pos.X, pos.Y, pos.Z); } if (pos.Y <= 0) { pos.Y += posChange.Y + 1; SafeNativeMethods.BodySetPosition(Body, pos.X, pos.Y, pos.Z); } } if (pos.Z < _pParentScene.GetTerrainHeightAtXY(pos.X, pos.Y)) { pos.Z = _pParentScene.GetTerrainHeightAtXY(pos.X, pos.Y) + 2; SafeNativeMethods.BodySetPosition(Body, pos.X, pos.Y, pos.Z); } // Check if hovering if ((m_Hoverflags & (VehicleFlag.HOVER_WATER_ONLY | VehicleFlag.HOVER_TERRAIN_ONLY | VehicleFlag.HOVER_GLOBAL_HEIGHT)) != 0) { // We should hover, get the target height if ((m_Hoverflags & VehicleFlag.HOVER_WATER_ONLY) != 0) { m_VhoverTargetHeight = _pParentScene.GetWaterLevel() + m_VhoverHeight; } if ((m_Hoverflags & VehicleFlag.HOVER_TERRAIN_ONLY) != 0) { m_VhoverTargetHeight = _pParentScene.GetTerrainHeightAtXY(pos.X, pos.Y) + m_VhoverHeight; } if ((m_Hoverflags & VehicleFlag.HOVER_GLOBAL_HEIGHT) != 0) { m_VhoverTargetHeight = m_VhoverHeight; } if ((m_Hoverflags & VehicleFlag.HOVER_UP_ONLY) != 0) { // If body is aready heigher, use its height as target height if (pos.Z > m_VhoverTargetHeight) { m_VhoverTargetHeight = pos.Z; } } if ((m_Hoverflags & VehicleFlag.LOCK_HOVER_HEIGHT) != 0) { if ((pos.Z - m_VhoverTargetHeight) > .2 || (pos.Z - m_VhoverTargetHeight) < -.2) { SafeNativeMethods.BodySetPosition(Body, pos.X, pos.Y, m_VhoverTargetHeight); } } else { float herr0 = pos.Z - m_VhoverTargetHeight; // Replace Vertical speed with correction figure if significant if (Math.Abs(herr0) > 0.01f) { m_dir.Z = -((herr0 * pTimestep * 50.0f) / m_VhoverTimescale); //KF: m_VhoverEfficiency is not yet implemented } else { m_dir.Z = 0f; } } // m_VhoverEfficiency = 0f; // 0=boucy, 1=Crit.damped // m_VhoverTimescale = 0f; // time to acheive height // pTimestep is time since last frame,in secs } if ((m_flags & (VehicleFlag.LIMIT_MOTOR_UP)) != 0) { //Start Experimental Values if (Zchange > .3) { grav.Z = (float)(grav.Z * 3); } if (Zchange > .15) { grav.Z = (float)(grav.Z * 2); } if (Zchange > .75) { grav.Z = (float)(grav.Z * 1.5); } if (Zchange > .05) { grav.Z = (float)(grav.Z * 1.25); } if (Zchange > .025) { grav.Z = (float)(grav.Z * 1.125); } float terraintemp = _pParentScene.GetTerrainHeightAtXY(pos.X, pos.Y); float postemp = (pos.Z - terraintemp); if (postemp > 2.5f) { grav.Z = (float)(grav.Z * 1.037125); } //End Experimental Values } if ((m_flags & (VehicleFlag.NO_X)) != 0) { m_dir.X = 0; } if ((m_flags & (VehicleFlag.NO_Y)) != 0) { m_dir.Y = 0; } if ((m_flags & (VehicleFlag.NO_Z)) != 0) { m_dir.Z = 0; } m_lastPositionVector = SafeNativeMethods.BodyGetPosition(Body); // Apply velocity SafeNativeMethods.BodySetLinearVel(Body, m_dir.X, m_dir.Y, m_dir.Z); // apply gravity force SafeNativeMethods.BodyAddForce(Body, grav.X, grav.Y, grav.Z); // apply friction Vector3 decayamount = Vector3.One / (m_linearFrictionTimescale / pTimestep); m_lastLinearVelocityVector -= m_lastLinearVelocityVector * decayamount; } // end MoveLinear()