/// <summary> /// Utilizado para carregar as imagens de treinamento e gerar o arquivo de descritores /// </summary> private void LoadTrain() { Image <Bgr, Byte> image; for (int i = 0; i < banknotes.Count; i++) { var banknote = banknotes[i]; //J = 1 pois é o indice que está no nome das imagens de treinamento for (int j = 1; j <= banknoteSizes[banknote]; j++) { var nameFile = $@"{Path}\Train\{banknote} ({j}).jpg"; image = new Image <Bgr, Byte>(nameFile); listaImagensTreino.Add(nameFile, image); MKeyPoint[] keypoints; keypoints = extractor.Detect(image); listaKeyPointsImagensTreino.Add(nameFile, keypoints); Mat features = new Mat(); extractor.Compute(image, new VectorOfKeyPoint(keypoints), features); featureUnclustered.PushBack(features); } } //Armazenando os descritores processados da etapa de cima em um arquivo train_descriptors.yml FileStorage fs = new FileStorage($@"{Path}\SVM Datasets\train_descriptors.yml", FileStorage.Mode.Write); //Adicionando Label train_descriptors ao arquivo train_descriptors.yml fs.Write(featureUnclustered, "train_descriptors"); fs.ReleaseAndGetString(); //Adicionando descritores não processados no BOW bowTrainer.Add(featureUnclustered); }
public KeyPoint[] getKeyPoints(Mat camMat, int nKeyPoints) { orb = SIFT.Create(nKeyPoints); KeyPoint[] keyPoints = orb.Detect(camMat); return(keyPoints); }
public bool ConfigRecognitionImageTrain(Mat imageTrain, Mat roiTrain, bool useGlobalMatch) { _trainsImage.Push(imageTrain); _keypointsImageTrain.Add(new VectorOfKeyPoint()); _descriptorsImageTrain.Push(new Mat()); _LODIndex = _trainsImage.Size - 1; SIFT sift = new SIFT(); //Insere os pontos chaves da imagem alvo na lista de pontos chaves _keypointsImageTrain.Insert(_LODIndex, new VectorOfKeyPoint(sift.Detect(_trainsImage[_LODIndex], roiTrain))); if (_keypointsImageTrain[_LODIndex] != null && _keypointsImageTrain[_LODIndex].Size < 4) { return(false); } //Calcula os descritores dos pontos chaves extraidos, no caso se extrair poucos descritores ele return false = não reconhecido sift.Compute(_trainsImage[_LODIndex], _keypointsImageTrain[_LODIndex], _descriptorsImageTrain[_LODIndex]); if (_descriptorsImageTrain[_LODIndex].Rows < 4) { return(false); } if (useGlobalMatch) { return(true); } else { return(ConfigureImageTrainROI(_keypointsImageTrain[_LODIndex], roiTrain)); } }
public OriantatioOnMap(Image <Rgb, byte> Map, SIFTParametrs parametrs, double Compression = 4, double Radius = 20) { this.Map = Map; using (SIFT siftCPU = new SIFT(parametrs.nFeatures, parametrs.nOctaveLayers, parametrs.contrastThreshold, parametrs.edgeThreshold, parametrs.sigma)) { VectorMapKeyPoint = new VectorOfKeyPoint(siftCPU.Detect(Map)); VectorMapKeyPoint = FilterKeyPoint(VectorMapKeyPoint, Map, Compression, Radius, parametrs); siftCPU.Compute(Map, VectorMapKeyPoint, MapDiscriptors); } }
private VectorOfKeyPoint FilterKeyPoint(VectorOfKeyPoint InputVecor, Image <Rgb, byte> SourceImage, double Compression, double Diameter, SIFTParametrs parametrs) { VectorOfKeyPoint OutputVector = null; SourceImage = SourceImage.Resize(1.0 / Compression, Emgu.CV.CvEnum.Inter.Area); using (SIFT siftCPU = new SIFT(parametrs.nFeatures, parametrs.nOctaveLayers, parametrs.contrastThreshold, parametrs.edgeThreshold, parametrs.sigma)) { VectorOfKeyPoint MainVecor = new VectorOfKeyPoint(siftCPU.Detect(SourceImage, null)); OutputVector = new VectorOfKeyPoint(RemoveFakeKeyPoint(MainVecor, InputVecor, Compression, Diameter)); } return(OutputVector); }
public KeyPoints SIFTDescriptor() { KeyPoints result = new KeyPoints(); //SiFT Descriptor SIFT siftAlgo = null; VectorOfKeyPoint modelKeyPointsSift = null; try { siftAlgo = new SIFT(); modelKeyPointsSift = new VectorOfKeyPoint(); MKeyPoint[] siftPoints = siftAlgo.Detect(preProcessedImageInGrayScale); modelKeyPointsSift.Push(siftPoints); UMat siftDescriptors = new UMat(); siftAlgo.DetectAndCompute(preProcessedImageInGrayScale, null, modelKeyPointsSift, siftDescriptors, true); Image <Gray, Byte> outputImage = new Image <Gray, byte>( preProcessedImageInGrayScale.Width, preProcessedImageInGrayScale.Height); Features2DToolbox.DrawKeypoints( preProcessedImageInGrayScale, modelKeyPointsSift, outputImage, new Bgr(255, 255, 255), Features2DToolbox.KeypointDrawType.Default); string folderName = @"C:\Projects\LeafService\SiftImage"; string pathString = System.IO.Path.Combine(folderName, "Sift" + DateTime.UtcNow.Ticks); System.IO.Directory.CreateDirectory(pathString); if (Directory.Exists(pathString)) { string newFilePath = Path.Combine(pathString, "SiftImage" + DateTime.UtcNow.Ticks); outputImage.Save(folderName + ".jpg"); outputImage.Save(@"C:\Projects\LeafService\SIFTgray.jpg"); } //outputImage.Save("sift.jpg"); result.Descriptor = siftDescriptors; result.Points = siftPoints; return(result); } finally { siftAlgo.Dispose(); modelKeyPointsSift.Dispose(); } }
public Mat PutFeaturesOnImage() { SIFT siftCPU = new SIFT(); Details.modelKeyPoints = new VectorOfKeyPoint(); mKeyPoints = siftCPU.Detect(Details.thinnedimage, null); Details.modelKeyPoints.Push(mKeyPoints); Mat o = new Mat(); siftCPU.Compute(Details.thinnedimage, Details.modelKeyPoints, o); Mat resultimage = new Mat(); Features2DToolbox.DrawKeypoints(Details.thinnedimage, Details.modelKeyPoints, resultimage, new Bgr(Color.Red), Features2DToolbox.KeypointDrawType.Default); return(resultimage); }
public AlgorithmResult DetectSift( string filename, KeypointType kpsType, int features, int octaveLayers, double contrastThreshold, double edgeThreshold, double sigma) { AlgorithmResult result = new AlgorithmResult(); Image <Bgr, byte> image = ImageHelper.GetImage(filename); Image <Bgr, byte> resultImage = new Image <Bgr, byte>(filename); // Get features from image var sift = new SIFT(features, octaveLayers, contrastThreshold, edgeThreshold, sigma); var keyPoints = sift.Detect(image); DrawKeypoints( image, new VectorOfKeyPoint(keyPoints), resultImage, new Bgr(Color.FromArgb(255, 77, 77)), GetKeypointDraw(kpsType)); result.ImageArray = ImageHelper.SetImage(resultImage); result.KeyDatas = new List <KeyPointModel>(); result.KeyDatas.AddRange(keyPoints.Select(k => new KeyPointModel() { X = k.Point.X, Y = k.Point.Y, Size = k.Size, Angle = k.Angle, Response = k.Response, Octave = k.Octave, ClassId = k.ClassId })); return(result); }
public void DrawSIFTDescriptor(string inputFile, string outputFile) { //SiFT Descriptor SIFT siftAlgo = null; VectorOfKeyPoint modelKeyPointsSift = null; try { siftAlgo = new SIFT(); modelKeyPointsSift = new VectorOfKeyPoint(); using (Image <Bgr, byte> inputImage = new Image <Bgr, byte>(inputFile)) { MKeyPoint[] siftPoints = siftAlgo.Detect(inputImage); modelKeyPointsSift.Push(siftPoints); UMat siftDescriptors = new UMat(); siftAlgo.DetectAndCompute(inputImage, null, modelKeyPointsSift, siftDescriptors, true); using (Image <Gray, Byte> outputImage = new Image <Gray, byte>( inputImage.Width, inputImage.Height)) { Features2DToolbox.DrawKeypoints( inputImage, modelKeyPointsSift, outputImage, new Bgr(255, 255, 255), Features2DToolbox.KeypointDrawType.Default); outputImage.Save(outputFile); } } } finally { siftAlgo.Dispose(); modelKeyPointsSift.Dispose(); } }
public Bitmap DrawSift(Image <Rgb, byte> modelimage, Image <Rgb, byte> observedimage) { int k = 2; double uniquenessThreshold = 0.80; VectorOfKeyPoint modelKeyPoints = new VectorOfKeyPoint(), observedKeyPoints = new VectorOfKeyPoint(); Mat modeldiscriptors = new Mat(); Mat observeddiscriptors = new Mat(); //observedKeyPoints = observedKeyPoints.Resize(1.0 / Compression, Inter.Area); using (SIFT siftCPU = new SIFT(0, 5, 0.04, 10.0, 1.6)) { siftCPU.DetectAndCompute(modelimage, null, modelKeyPoints, modeldiscriptors, false); observedKeyPoints = new VectorOfKeyPoint(siftCPU.Detect(observedimage)); siftCPU.Compute(observedimage, observedKeyPoints, observeddiscriptors); } VectorOfVectorOfDMatch matches = new VectorOfVectorOfDMatch(); using (Emgu.CV.Flann.LinearIndexParams ip = new Emgu.CV.Flann.LinearIndexParams()) using (Emgu.CV.Flann.SearchParams sp = new SearchParams()) using (Emgu.CV.Features2D.DescriptorMatcher matcher = new FlannBasedMatcher(ip, sp)) { matcher.Add(modeldiscriptors); matcher.KnnMatch(observeddiscriptors, matches, k, null); } Mat mask = new Mat(matches.Size, 1, DepthType.Cv8U, 1); mask.SetTo(new MCvScalar(255)); Features2DToolbox.VoteForUniqueness(matches, uniquenessThreshold, mask); Mat homography = null; int nonZeroCount = CvInvoke.CountNonZero(mask); if (nonZeroCount >= 4) { nonZeroCount = Features2DToolbox.VoteForSizeAndOrientation(modelKeyPoints, observedKeyPoints, matches, mask, 1.5, 20); if (nonZeroCount >= 4) { homography = Features2DToolbox.GetHomographyMatrixFromMatchedFeatures(modelKeyPoints, observedKeyPoints, matches, mask, 2); } } observedimage = new Image <Rgb, byte>(DrawZone(observedimage.Mat, observedKeyPoints, matches, mask).Bitmap); //modelKeyPoints.FilterByPixelsMask(new Image<Gray, byte>(mask.Bitmap)); //observedKeyPoints.FilterByPixelsMask(new Image<Gray, byte>(mask.Bitmap)); Mat result = new Mat(); //Draw the matched keypoints Features2DToolbox.DrawMatches(modelimage, modelKeyPoints, observedimage, observedKeyPoints, matches, result, new MCvScalar(0, 255, 0), new MCvScalar(255, 0, 0), mask); if (homography != null) { //draw a rectangle along the projected model SD.Rectangle rect = new SD.Rectangle(SD.Point.Empty, modelimage.Size); PointF[] pts = new PointF[] { new PointF(rect.Left, rect.Bottom), new PointF(rect.Right, rect.Bottom), new PointF(rect.Right, rect.Top), new PointF(rect.Left, rect.Top) }; pts = CvInvoke.PerspectiveTransform(pts, homography); #if NETFX_CORE Point[] points = Extensions.ConvertAll <PointF, Point>(pts, Point.Round); #else SD.Point[] points = Array.ConvertAll <PointF, SD.Point>(pts, SD.Point.Round); #endif using (VectorOfPoint vp = new VectorOfPoint(points)) { CvInvoke.Polylines(result, vp, true, new MCvScalar(0, 0, 255), 2); } } return(result.Bitmap); }
IEnumerator CalculateHomography() //void CalculateHomography() { //Debug.Log("CalculateHomography1"); //myCam.Pause(); yield return(new WaitForEndOfFrame()); //yield return new WaitForSeconds((float)0.5); //程式開始後至少要等0.3秒才會出現影像畫面,不然算sift一開始就會記憶體爆掉 //input camera image /*Texture2D sourceTex = ScreenCapture.CaptureScreenshotAsTexture(); * Color[] pix = sourceTex.GetPixels((int)rectBotLeft.x, (int)rectBotLeft.y, width, height); * Texture2D tex = new Texture2D(width, height); * tex.SetPixels(pix); * tex.Apply();*/ //Debug.Log("CalculateHomography2"); //rawimage position at (0,0),start from bottom left int xStart = (int)(Screen.width - rawImageRT.rect.width) / 2; int yStart = (int)(Screen.height - rawImageRT.rect.height) / 2; /*Debug.Log("xStart: "+xStart); * Debug.Log("yStart: "+yStart); * Debug.Log("Screen.width: "+Screen.width); * Debug.Log("Screen.height: "+Screen.height); * Debug.Log("rawImageRT.rect.width: "+rawImageRT.rect.width); * Debug.Log("rawImageRT.rect.height: "+rawImageRT.rect.height);*/ //get sign image with text Texture2D sourceTex = ScreenCapture.CaptureScreenshotAsTexture(); //rawImageRI.texture = sourceTex; //Color[] pix = sourceTex.GetPixels((int)rectBotLeft.x, (int)rectBotLeft.y, width, height); Color[] pix = sourceTex.GetPixels(xStart, yStart, (int)rawImageRT.rect.width, (int)rawImageRT.rect.height); tex = new Texture2D((int)rawImageRT.rect.width, (int)rawImageRT.rect.height); tex.SetPixels(pix); tex.Apply(); //Debug.Log("tex.width: "+tex.width); //Debug.Log("tex.height: "+tex.height); //input fixed image /*Texture2D tex = new Texture2D(2,2); * string imgPath = "../signboard-rectangle/test-199-fast-628.jpg"; * byte [] binaryImageData = File.ReadAllBytes(imgPath); * tex.LoadImage(binaryImageData);*/ //scale texture to make it smaller TextureScale.Bilinear(tex, tex.width / 2, tex.height / 2); //必要 防止記憶體爆炸 tex = TextureGray.ToGray(tex); //rawImageRI.texture = tex; mat = Unity.TextureToMat(tex); Destroy(sourceTex); Destroy(tex); //Cv2.ImShow("img", mat); ok //OpenCvSharp.Mat mat = Cv2.ImRead(imgPath, ImreadModes.Unchanged); //Debug.Log("mat: "+mat.ToString()); //string imgPath = "../signboard-rectangle/test-199-fast-628.jpg"; //OpenCvSharp.Mat mat = Cv2.ImRead(imgPath); InputArray imgCam = InputArray.Create(mat); desCam = OutputArray.Create(mat); //Cv2.ImShow("img", mat); ok //OpenCvSharp.Mat mat2 = mat; //sift = SIFT.Create(); //System.Diagnostics.Stopwatch time = new System.Diagnostics.Stopwatch(); //time.Start (); //卡卡 OpenCvSharp.KeyPoint[] kpCam = sift.Detect(mat); //OpenCvSharp.KeyPoint[] kpCam = surf.Detect(mat); //OpenCvSharp.KeyPoint[] kpCam = orb.Detect(mat); //OpenCvSharp.KeyPoint[] kpCam = brief.Detect(mat); //time.Stop(); //Debug.Log("執行 " + time.Elapsed.TotalSeconds + " 秒"); //myCam.Pause(); //rawImageRI.texture = tex; //Cv2.ImShow("img", mat); ok //Cv2.ImShow("img", mat2); ok sift.Compute(imgCam, ref kpCam, desCam); //surf.Compute(img2, ref kpCam, desCam); //orb.Compute(img2, ref kpCam, desCam); //brief.Compute(img2, ref kpCam, desCam); //Cv2.ImShow("img", mat); //Cv2.ImShow("img", mat2); 爆炸 OpenCvSharp.Mat desCammat = desCam.GetMat(); //Debug.Log("desCammat: "+desCammat); //if (!M) 如果還沒計算出homography M { //desFirstCatch = desCam; //OutputArray descriptors_object = des1; OpenCvSharp.Mat des1mat = des1.GetMat(); OpenCvSharp.Mat des2mat = des2.GetMat(); //OpenCvSharp.Mat des3mat = des3.GetMat(); //Debug.Log("des1mat: "+des1mat); OpenCvSharp.DMatch[] dmatch1 = descriptorMatcher.Match(des1mat, desCammat); OpenCvSharp.DMatch[] dmatch2 = descriptorMatcher.Match(des2mat, desCammat); //OpenCvSharp.DMatch[] dmatch3 = descriptorMatcher.Match(des3mat, desCammat); //Debug.Log("damtch1[0]: "+dmatch1[0].ToString()); //} //else { //OpenCvSharp.Mat desFirstCatchmat = desFirstCatch.GetMat(); // OpenCvSharp.DMatch[] dmatch = descriptorMatcher.Match(desFirstCatchmat, desCammat); // OutputArray descriptors_object = desFirstCatch; //} double max_dist1 = 0; double min_dist1 = 100; double max_dist2 = 0; double min_dist2 = 100; //double max_dist3 = 0; //double min_dist3 = 100; //Cv2.ImShow("img", mat); 爆炸 //Quick calculation of max and min distances between keypoints foreach (OpenCvSharp.DMatch d in dmatch1) { double dist = d.Distance; if (dist < min_dist1) { min_dist1 = dist; } if (dist > max_dist1) { max_dist1 = dist; } } foreach (OpenCvSharp.DMatch d in dmatch2) { double dist = d.Distance; if (dist < min_dist2) { min_dist2 = dist; } if (dist > max_dist2) { max_dist2 = dist; } } /*foreach (OpenCvSharp.DMatch d in dmatch3){ * double dist = d.Distance; * if( dist < min_dist3 ) min_dist3 = dist; * if( dist > max_dist3 ) max_dist3 = dist; * }*/ //Draw only "good" matches (i.e. whose distance is less than 3*min_dist ) List <OpenCvSharp.DMatch> goodMatch1 = new List <OpenCvSharp.DMatch>(); foreach (OpenCvSharp.DMatch d in dmatch1) { if (d.Distance < 3 * min_dist1) { goodMatch1.Add(d); } } List <OpenCvSharp.DMatch> goodMatch2 = new List <OpenCvSharp.DMatch>(); foreach (OpenCvSharp.DMatch d in dmatch2) { if (d.Distance < 3 * min_dist2) { goodMatch2.Add(d); } } /*List<OpenCvSharp.DMatch> goodMatch3 = new List<OpenCvSharp.DMatch>(); * foreach (OpenCvSharp.DMatch d in dmatch3){ * if( d.Distance < 3*min_dist3 ) * goodMatch3.Add(d); * }*/ List <OpenCvSharp.Point2f> srcPts1 = new List <OpenCvSharp.Point2f>(); List <OpenCvSharp.Point2f> dstPts1 = new List <OpenCvSharp.Point2f>(); foreach (OpenCvSharp.DMatch d in goodMatch1) { //-- Get the keypoints from the good matches srcPts1.Add(kp1[d.QueryIdx].Pt); dstPts1.Add(kpCam[d.TrainIdx].Pt); //Debug.Log("kp1[d.QueryIdx].Pt: "+kp1[d.QueryIdx].Pt); } List <OpenCvSharp.Point2f> srcPts2 = new List <OpenCvSharp.Point2f>(); List <OpenCvSharp.Point2f> dstPts2 = new List <OpenCvSharp.Point2f>(); foreach (OpenCvSharp.DMatch d in goodMatch2) { //-- Get the keypoints from the good matches srcPts2.Add(kp2[d.QueryIdx].Pt); dstPts2.Add(kpCam[d.TrainIdx].Pt); //Debug.Log("kp1[d.QueryIdx].Pt: "+kp1[d.QueryIdx].Pt); } /*List<OpenCvSharp.Point2f> srcPts3 = new List<OpenCvSharp.Point2f>(); * List<OpenCvSharp.Point2f> dstPts3 = new List<OpenCvSharp.Point2f>(); * foreach (OpenCvSharp.DMatch d in goodMatch3){ * //-- Get the keypoints from the good matches * srcPts3.Add(kp3[d.QueryIdx].Pt); * dstPts3.Add(kpCam[d.TrainIdx].Pt); * //Debug.Log("kp1[d.QueryIdx].Pt: "+kp1[d.QueryIdx].Pt); * }*/ //jump to next iteration if less than certain number of keypoints matched if (srcPts1.Count < 200 && srcPts2.Count < 200) { yield break; } if (srcPts1.Count >= srcPts2.Count) { srcPts = new List <OpenCvSharp.Point2f>(srcPts1); dstPts = new List <OpenCvSharp.Point2f>(dstPts1); text1.enabled = true; text2.enabled = false; num1++; //text3.enabled = false; } /*else if(srcPts2.Count >= srcPts1.Count && srcPts2.Count >= srcPts3.Count){ * srcPts = new List<OpenCvSharp.Point2f>(srcPts2); * dstPts = new List<OpenCvSharp.Point2f>(dstPts2); * text2.enabled = true; * text1.enabled = false; * text3.enabled = false; * }*/ else { srcPts = new List <OpenCvSharp.Point2f>(srcPts2); dstPts = new List <OpenCvSharp.Point2f>(dstPts2); text2.enabled = true; text1.enabled = false; num2++; //text2.enabled = false; } if (num1 > num2 + 10) { text1.enabled = true; text2.enabled = false; } if (num2 > num1 + 10) { text2.enabled = true; text1.enabled = false; } if (num1 > 60 || num2 > 60) { num1 = 0; num2 = 0; } //OpenCvSharp.Mat mat2 = mat; //Cv2.DrawKeypoints(mat, kpCam, mat2); //Cv2.ImShow("img", mat); 亂碼圖 //Texture2D tex2 = new Texture2D(8, 8); //tex2 = Unity.MatToTexture(mat); //rawImageRI.texture = tex2; //myCam.Pause(); //Cv2.ImShow("img", mat2); 亂碼圖 Texture2D emptyTex = new Texture2D(8, 8); OpenCvSharp.Mat outputImg = Unity.TextureToMat(emptyTex); //Debug.Log("outputImg: "+outputImg.ToString()); InputArray srcArr = InputArray.Create <OpenCvSharp.Point2f>(srcPts); InputArray dstArr = InputArray.Create <OpenCvSharp.Point2f>(dstPts); OutputArray mask = OutputArray.Create(outputImg); OpenCvSharp.Mat M = Cv2.FindHomography(srcArr, dstArr, HomographyMethods.Ransac, 5, mask); OpenCVForUnity.Mat transMat = new OpenCVForUnity.Mat(3, 3, CvType.CV_32FC1); transMat.put(0, 0, M.Get <double>(0, 0), M.Get <double>(0, 1), M.Get <double>(0, 2), M.Get <double>(1, 0), M.Get <double>(1, 1), M.Get <double>(1, 2), M.Get <double>(2, 0), M.Get <double>(2, 1), M.Get <double>(2, 2)); //Debug.Log("transMat: "+transMat.dump()); //Debug.Log("mask: "+mask); //OpenCvSharp.Mat maskMat = mask.GetMat(); //Debug.Log("maskMat: "+maskMat.ToString()); //maskMoB = new OpenCvSharp.MatOfByte(maskMat); //-- Get the corners from the image_1 ( the object to be "detected" ) /*OpenCvSharp.Point2f[] obj_corners = new OpenCvSharp.Point2f[4]; * obj_corners[0] = new OpenCvSharp.Point2f(0, 0); * obj_corners[1] = new OpenCvSharp.Point2f(inputTex.width, 0); * obj_corners[2] = new OpenCvSharp.Point2f(inputTex.width, inputTex.height); * obj_corners[3] = new OpenCvSharp.Point2f(0, inputTex.height); * * //OpenCvSharp.Point2f[] scene_corners = new OpenCvSharp.Point2f[4]; * //scene_corners = Cv2.PerspectiveTransform(obj_corners, M); * * //if (!M) 如果還沒計算出homography M { * //Cv2.DrawMatches(inputImg, kp1, mat, kpCam, goodMatch, outputImg, OpenCvSharp.Scalar.All(-1), * //OpenCvSharp.Scalar.All(-1), maskMoB.ToArray(), DrawMatchesFlags.NotDrawSinglePoints); * //else { * * //Texture2D outputTex = Unity.MatToTexture(outputImg); * //rawImageRI.texture = outputTex; * * //-- Draw lines between the corners (the mapped object in the scene - image_2 ) * //Cv2.Line(outputImg, scene_corners[0] + obj_corners[1], scene_corners[1] + obj_corners[1], OpenCvSharp.Scalar.LightBlue, 4); * //Cv2.Line(outputImg, scene_corners[1] + obj_corners[1], scene_corners[2] + obj_corners[1], OpenCvSharp.Scalar.LightBlue, 4); * //Cv2.Line(outputImg, scene_corners[2] + obj_corners[1], scene_corners[3] + obj_corners[1], OpenCvSharp.Scalar.LightBlue, 4); * //Cv2.Line(outputImg, scene_corners[3] + obj_corners[1], scene_corners[0] + obj_corners[1], OpenCvSharp.Scalar.LightBlue, 4); * * //OpenCvSharp.Mat outimg = Unity.TextureToMat(emptyTex); * //inputImg = Unity.TextureToMat(emptyTex); * //Cv2.DrawKeypoints(mat, kpCam, outimg, OpenCvSharp.Scalar.LightBlue); * * //show image with text after homography * /*string imgPath2 = "../signboard-rectangle/test-IMG_0204-text.PNG"; * textTex = new Texture2D(2,2); * byte [] binaryImageData2 = File.ReadAllBytes(imgPath2); * textTex.LoadImage(binaryImageData2); * rawImageRI.texture = textTex;*/ /*OpenCVForUnity.Mat inputTextImg = new OpenCVForUnity.Mat(new OpenCVForUnity.Size(textTex.width, textTex.height), CvType.CV_8UC4); * Utils.texture2DToMat(textTex, inputTextImg); * OpenCVForUnity.Mat outputTextImg = new OpenCVForUnity.Mat(new OpenCVForUnity.Size(textTex.width, textTex.height), CvType.CV_8UC4); * * Imgproc.warpPerspective(inputTextImg, outputTextImg, transMat, new OpenCVForUnity.Size(textTex.width, textTex.height)); * * Texture2D outputTex = new Texture2D((int)textTex.width, (int)textTex.height, TextureFormat.RGB24, false); * Utils.matToTexture2D(outputTextImg, outputTex);*/ //TextureScale.Bilinear(outputTex, outputTex.width/5, outputTex.height/5); //rawImageRI.texture = outputTex; //text.enabled = true; /*Vector3 scale; * scale.x = new Vector4((float)M.Get<double>(0,0), (float)M.Get<double>(1,0), (float)M.Get<double>(2,0), 0).magnitude; * scale.y = new Vector4((float)M.Get<double>(0,1), (float)M.Get<double>(1,1), (float)M.Get<double>(2,1), 0).magnitude; * scale.z = new Vector4((float)M.Get<double>(0,2), (float)M.Get<double>(1,2), (float)M.Get<double>(2,2), 0).magnitude; * * Vector3 forward; * forward.x = (float)M.Get<double>(0,2); * forward.y = (float)M.Get<double>(1,2); * forward.z = (float)M.Get<double>(2,2); * * Vector3 upwards; * upwards.x = (float)M.Get<double>(0,1); * upwards.y = (float)M.Get<double>(1,1); * upwards.z = (float)M.Get<double>(2,1); * * //textRT.localScale = scale; * //textRT.rotation = Quaternion.LookRotation(forward, upwards);*/ Matrix4x4 matrix = new Matrix4x4(); /*matrix.SetRow(0, new Vector4((float)M.Get<double>(0,0), (float)M.Get<double>(0,1), (float)M.Get<double>(0,2),0)); * matrix.SetRow(1, new Vector4((float)M.Get<double>(1,0), (float)M.Get<double>(1,1), (float)M.Get<double>(1,2),0)); * matrix.SetRow(2, new Vector4(0,0,1,0)); * matrix.SetRow(3, new Vector4(0,0,0,1));*/ //inverse效果還行 matrix.SetRow(0, new Vector4((float)M.Get <double>(0, 0), (float)M.Get <double>(0, 1), 0, (float)M.Get <double>(0, 2))); matrix.SetRow(1, new Vector4((float)M.Get <double>(1, 0), (float)M.Get <double>(1, 1), 0, (float)M.Get <double>(1, 2))); matrix.SetRow(2, new Vector4(0, 0, 1, 0)); matrix.SetRow(3, new Vector4(0, 0, 0, 1)); Matrix4x4 inverse = matrix.inverse; //textRT.localScale = matrix.lossyScale; //textRT.rotation = matrix.rotation; //rotation跟eulerangles效果一樣 textRT1.rotation = inverse.rotation; textRT2.rotation = inverse.rotation; //textRT3.rotation = inverse.rotation; Destroy(emptyTex); //calculate euler angle /*double angleX = Math.Asin(-M.Get<double>(2,1)); * double angleY = Math.Atan2(M.Get<double>(2,0), M.Get<double>(2,2)); * double angleZ = Math.Atan2(M.Get<double>(0,1), M.Get<double>(1,1)); * //textRT.eulerAngles = new Vector3((float)angleX, (float)angleY, (float)angleZ); * //Debug.Log("textRT.eulerAngles: "+textRT.eulerAngles.ToString()); * * //calculate quaternion * double w = Math.Sqrt(1 + M.Get<double>(0,0) + M.Get<double>(1,1) + M.Get<double>(2,2))/2; * double w4 = w*4; * double qx = (M.Get<double>(2,1) - M.Get<double>(1,2))/w4 ; * double qy = (M.Get<double>(0,2) - M.Get<double>(2,0))/w4 ; * double qz = (M.Get<double>(1,0) - M.Get<double>(0,1))/w4 ; * //textRT.rotation = new Quaternion((float)qx, (float)qy, (float)qz, 1); * * double tr = M.Get<double>(0,0) + M.Get<double>(1,1) + M.Get<double>(2,2); * Debug.Log("tr: "+tr);*/ //Cv2.ImShow("img", mat); //myCam.Pause(); }
void Start() { //thread = new Thread(new ThreadStart(ThreadMainFunc)); //thread = new Thread(ThreadMainFunc); //thread.IsBackground = true; //thread = Loom.RunAsync(ThreadMainFunc); //thread.Start(); //textTex = Resources.Load<Texture2D>("test-IMG_0204-text"); //rawImageRI.texture = textTex; //TextAsset binary = (TextAsset)AssetDatabase.LoadAssetAtPath("Assets/img1.bytes", typeof(TextAsset)); //inputTex = Resources.Load<Texture2D>("test-IMG_0204"); //rawImageRI.texture = inputTex; //Debug.Log("inputTex.width: "+inputTex.width); //Debug.Log("inputTex.height: "+inputTex.height); //tex.LoadImage(binary.bytes); //Texture2D tex = (Texture2D)AssetDatabase.LoadAssetAtPath("Assets/img.PNG", typeof(Texture2D)); //StartCoroutine(GetTextImg()); //Size texSize = new Size(tex.width, tex.height); //Mat mat = new Mat(texSize, CvType.CV_8UC4); //Utils.texture2DToMat(tex, mat); //inputImg = Cv2.ImRead(imgPath); //Cv2.ImShow("inputImg", inputImg); //tex = Unity.MatToTexture(inputImg); //rawImageRI.texture = tex; /*inputTex = new Texture2D(2,2); * string imgPath = "../signboard-rectangle/test-IMG_0204.PNG"; * byte [] binaryImageData = File.ReadAllBytes(imgPath); * inputTex.LoadImage(binaryImageData);*/ //inputTex = Resources.Load<Texture2D>("forAddText"); //必要 防止記憶體爆炸 Texture2D inputTex1 = TextureGray.ToGray("1"); Texture2D inputTex2 = TextureGray.ToGray("2"); //Texture2D inputTex3 = TextureGray.ToGray("3"); //Debug.Log("inputTex.width: "+inputTex.width); //Debug.Log("inputTex.height: "+inputTex.height); //rawImageRI.texture = inputTex; OpenCvSharp.Mat inputImg1 = Unity.TextureToMat(inputTex1); OpenCvSharp.Mat inputImg2 = Unity.TextureToMat(inputTex2); //OpenCvSharp.Mat inputImg3 = Unity.TextureToMat(inputTex3); //OpenCvSharp.Mat inputImg2 = Unity.TextureToMat(inputTex); //Cv2.ImShow("img", inputImg); InputArray img1 = InputArray.Create(inputImg1); InputArray img2 = InputArray.Create(inputImg2); //InputArray img3 = InputArray.Create(inputImg3); //Debug.Log("inputImg: "+inputImg.ToString()); //InputArray mask = null; //OpenCvSharp.KeyPoint[] kp1 = null; des1 = OutputArray.Create(inputImg1); des2 = OutputArray.Create(inputImg2); //des3 = OutputArray.Create(inputImg3); //Debug.Log("des1: "+des1); //Initiate SIFT detector and extractor //siftDetect = FeatureDetector.create(3); //siftExtract = DescriptorExtractor.create(1); sift = SIFT.Create(); //surf = SURF.Create((double)100); //orb = OpenCvSharp.ORB.Create(); //brief = OpenCvSharp.XFeatures2D.BriefDescriptorExtractor.Create(); //if image too large will cause app Terminated due to memory error kp1 = sift.Detect(inputImg1); kp2 = sift.Detect(inputImg2); //kp3 = sift.Detect(inputImg3); //kp1 = surf.Detect(inputImg); //kp1 = orb.Detect(inputImg); //kp1 = brief.Detect(inputImg); //Cv2.ImShow("img", inputImg); ok sift.Compute(img1, ref kp1, des1); sift.Compute(img2, ref kp2, des2); //sift.Compute(img3, ref kp3, des3); //surf.Compute(img1, ref kp1, des1); //orb.Compute(img1, ref kp1, des1); //brief.Compute(img1, ref kp1, des1); //Cv2.ImShow("img", inputImg); 亂碼圖 //Cv2.ImShow("img", inputImg2); ok //foreach (OpenCvSharp.KeyPoint kp in kp1) // Debug.Log("kp: "+kp.ToString()); //用flannbased的話unity會掛掉 descriptorMatcher = OpenCvSharp.DescriptorMatcher.Create("BruteForce"); //sift.DetectAndCompute(img1, mask, out kp1, des1); //MatOfKeyPoint kp1 = new MatOfKeyPoint(); //Mat des1 = new Mat(); //siftDetect.detect(inputImg, kp1); //siftExtract.compute(inputImg, kp1, des1); //StartCoroutine(OpenCamera());//開啟攝影機鏡頭 //StartCoroutine(CalculateHomography()); /*Texture2D sourceTex = ScreenCapture.CaptureScreenshotAsTexture(); * Color[] pix = sourceTex.GetPixels((int)rectBotLeft.x, (int)rectBotLeft.y, width, height); * tex = new Texture2D(width, height); * tex.SetPixels(pix); * tex.Apply(); * * tex = TextureGray.ToGray(tex); * * mat = Unity.TextureToMat(tex); * * InputArray img2 = InputArray.Create(mat); * desCam = OutputArray.Create(mat); * * kpCam = sift.Detect(mat);*/ }
private List <Result> DetectBanknotesTrain(Mat image, float minimumMatchAllowed = 0.07f, float minimuTargetAreaPercentage = 0.05f, float maxDistanceRatio = 0.75f, float reprojectionThresholPercentage = 0.01f, double confidence = 0.99, int maxIters = 5000, int minimumNumerInliers = 8) { object locker = new object(); List <Result> detectorResults = new List <Result>(); MKeyPoint[] mKeyPoints; SIFT sift = new SIFT(); mKeyPoints = sift.Detect(image); VectorOfKeyPoint keypointsEvalImage = new VectorOfKeyPoint(); keypointsEvalImage.Push(mKeyPoints); if (keypointsEvalImage.Size < 4) { return(detectorResults); } Mat descriptorsEvalImage = new Mat(); sift.Compute(image, keypointsEvalImage, descriptorsEvalImage); Features2DToolbox.DrawKeypoints(image, keypointsEvalImage, image, new Bgr(0, 0, 255), Features2DToolbox.KeypointDrawType.Default); float bestMatch = 0; Result bestDetectorResult = new Result(); int trainDetectorsSize = DetectedBanknotes.Count; bool validDetection = true; float reprojectionThreshold = image.Cols * reprojectionThresholPercentage; do { bestMatch = 0; Parallel.For(0, trainDetectorsSize, i => { DetectedBanknotes[(int)i].UpdateCurrentLODIndex(ref image, 0.6999999881F); Result detectorResult = DetectedBanknotes[(int)i].AnalyzeImageEval(ref keypointsEvalImage, ref descriptorsEvalImage, maxDistanceRatio, reprojectionThreshold, confidence, maxIters, minimumNumerInliers); if (detectorResult.GetBestROIMatch() > minimumMatchAllowed) { float contourArea = (float)CvInvoke.ContourArea(detectorResult.GetTrainContour()); float imageArea = (float)(image.Cols * image.Rows); float contourAreaPercentage = contourArea / imageArea; if (contourAreaPercentage > minimuTargetAreaPercentage) { double contourAspectRatio = _util.ComputeContourAspectRatio(detectorResult.GetTrainContour()); if (contourAspectRatio > _contourAspectRatioRange.X && contourAspectRatio < _contourAspectRatioRange.Y) { double contourCircularity = _util.ComputeContourCircularity(detectorResult.GetTrainContour()); if (contourCircularity > _contourCircularityRange.X && contourCircularity < _contourCircularityRange.Y) { if (CvInvoke.IsContourConvex(detectorResult.GetTrainContour())) { lock (locker) { if (detectorResult.GetBestROIMatch() > bestMatch) { bestMatch = detectorResult.GetBestROIMatch(); bestDetectorResult = detectorResult; } } } } } } } }); validDetection = bestMatch > minimumMatchAllowed && bestDetectorResult.GetInliers().Size > minimumNumerInliers; if (bestDetectorResult != null && validDetection) { detectorResults.Add(bestDetectorResult); _util.RemoveInliersFromKeypointsAndDescriptors(bestDetectorResult.GetInliers(), ref keypointsEvalImage, ref descriptorsEvalImage); } } while (validDetection); return(detectorResults); }
public static Mat GetDescriptors(float[][] matrix) { int numRows = matrix.Length; int numCols = matrix[0].Length; float fmin = float.MaxValue; float fmax = float.MinValue; for (int i = 0; i < numRows; i++) { for (int j = 0; j < numCols; j++) { if (matrix[i][j] < fmin) { fmin = matrix[i][j]; } if (matrix[i][j] > fmax) { fmax = matrix[i][j]; } } } Mat mat = new Mat(); using (var matraw = new Mat(numRows, numCols, MatType.CV_8U)) { for (int i = 0; i < numRows; i++) { for (int j = 0; j < numCols; j++) { byte val = (byte)(255f * (matrix[i][j] - fmin) / (fmax - fmin)); matraw.At <byte>(i, j) = val; } } var f = 512f / Math.Min(matraw.Width, matraw.Height); if (f < 1f) { Cv2.Resize(matraw, mat, new Size(0, 0), f, f, InterpolationFlags.Cubic); } else { mat = matraw.Clone(); } } var keypoints = _sift.Detect(mat); keypoints = keypoints.OrderByDescending(e => e.Size).ThenBy(e => e.Response).Take(AppConsts.MaxDescriptors).ToArray(); var matdescriptors = new Mat(); _sift.Compute(mat, ref keypoints, matdescriptors); /* * using (var matkeypoints = new Mat()) { * Cv2.DrawKeypoints(mat, keypoints, matkeypoints, null, DrawMatchesFlags.DrawRichKeypoints); * matkeypoints.SaveImage("matkeypoints.png"); * } */ using (var matflip = new Mat()) { Cv2.Flip(mat, matflip, FlipMode.Y); keypoints = _sift.Detect(matflip); keypoints = keypoints.OrderByDescending(e => e.Size).ThenBy(e => e.Response).Take(AppConsts.MaxDescriptors).ToArray(); using (var matdescriptorsflip = new Mat()) { _sift.Compute(matflip, ref keypoints, matdescriptorsflip); matdescriptors.PushBack(matdescriptorsflip); } } mat.Dispose(); return(matdescriptors); }