コード例 #1
0
ファイル: AnomalyDetection.cs プロジェクト: Malakahh/BesterUI
        private void PredictionNuThread(ref int count, SENSOR sensor, int start, int end, ref ConcurrentStack<SVMParameter> svmParams, List<SVMNode[]> data, int svmCount, ref NoveltyResult bestCoveredResult, ref Mutex mutex, ref ConcurrentBag<string> nuResults)
        {
            OneClassClassifier occ = new OneClassClassifier(data);
            List<OneClassFV> anomali = new List<OneClassFV>();
            List<Events> eventResult = new List<Events>();
            int maxCount = svmCount;
            string sensorPath = path + "/" + sensor.ToString();
            foreach (Events p in events)
            {
                var evt = p.Copy();
                eventResult.Add(evt);
            }
            while (!svmParams.IsEmpty)
            {
                SVMParameter svmParam = null;
                svmParams.TryPop(out svmParam);
                if (svmParam == null)
                {
                    break;
                }
                anomali = new List<OneClassFV>();
                occ.CreateModel(svmParam);
                anomali.AddRange(occ.PredictOutliers(featureVectors[sensor].Where(x => start < x.TimeStamp && x.TimeStamp < end).ToList()));
                PointsOfInterest dPointsOfInterest = new PointsOfInterest(anomali);

                foreach (Events evt in eventResult)
                {
                    evt.SetPointOfInterest(dPointsOfInterest);
                }

                NoveltyResult tempResult = new NoveltyResult(dPointsOfInterest, eventResult, start, end, svmParam, anomali);
                /*NoveltyResult.ConfusionMatrix cfm = tempResult.CalculateConfusionMatrix();
                decimal tpr = ((decimal)cfm.TruePostive) / ((decimal)cfm.TruePostive + cfm.FalseNegative);
                decimal fpr = 1 - ((decimal)cfm.TrueNegative / ((decimal)cfm.TrueNegative + cfm.FalsePostive));
                */
                double temp = tempResult.FlaggedAreaSize();

                double temp2 = tempResult.CalculateTotalNormalArea();
                double areaCovered = ((double)tempResult.FlaggedAreaSize() / tempResult.CalculateTotalNormalArea() > 1) ? 1 : tempResult.FlaggedAreaSize() / (double)tempResult.CalculateTotalNormalArea();
                nuResults.Add($"{tempResult.parameter.Nu.ToString()}:"
                   + $"{tempResult.CalculateHitResult().eventHits/ (double)tempResult.CalculateHitResult().eventsTotal};" 
                   + $"{tempResult.CalculateHitResult().hits / ((double)tempResult.CalculateHitResult().misses+ tempResult.CalculateHitResult().hits)};"
                   + $"{areaCovered}");

                mutex.WaitOne();
                count++;
                SetProgress(count, sensor);
                mutex.ReleaseMutex();
            }
            Log.LogMessage(sensor + " done!");
        }
コード例 #2
0
ファイル: AnomalyDetection.cs プロジェクト: Malakahh/BesterUI
       // private int numberOfTasks = 10;
        private async Task<NoveltyResult> DoNoveltyDetection(SENSOR sensor, int start, int end)
        {
            string sensorPath = path + "/" + sensor.ToString();
            var data = featureVectors[sensor].Select(x => x.Features).ToList();
            ConcurrentStack<SVMParameter> svmParams = new ConcurrentStack<SVMParameter>();
            //Debug purpose
            /*for (int i = 0; i < 10; i++)
            {
                SVMParameter s = new SVMParameter();
                s.C = 100;
                s.Gamma = 0.01;
                s.Kernel = SVMKernelType.RBF;
                s.Type = SVMType.ONE_CLASS;
                s.Nu = 0.01;
                svmParams.Push(s);
            }*/
            svmParams.PushRange(GenerateOneClassSVMParameters().ToArray());
            SetProgressMax(svmParams.Count + 1);
            NoveltyResult bestCoveredResult = null;
            Mutex bestResultMu = new Mutex(false, sensor.ToString());
            int count = 1;
            List<Task> tasks = new List<Task>();
            for (int i = 0; i < threadMAX.Value; i++)
            {
                Task task = Task.Run(() => PredictionThread(ref count, sensor, start, end, ref svmParams, data, svmParams.Count, ref bestCoveredResult, ref bestResultMu));
                tasks.Add(task);
            }
            await Task.WhenAll(tasks);
            List<int> integers = Enumerable.Range(1, 100).ToList();
            List <double> nus = integers.Select(x => ((double)x) / 100).ToList();
            //Cover
            foreach (double d in nus)
            {
                SVMParameter para = new SVMParameter();
                para.Gamma = bestCoveredResult.parameter.Gamma;
                para.Nu = d;
                para.Kernel = bestCoveredResult.parameter.Kernel;
                svmParams.Push(para);
            }

            count = 1;
            SetProgressMax(svmParams.Count + 1);
            bestResultMu.Dispose();
            bestResultMu = new Mutex(false, sensor.ToString());
            List<Task> nuCov = new List<Task>();
            ConcurrentBag<string> covNu = new ConcurrentBag<string>();
            for (int i = 0; i < threadMAX.Value; i++)
            {
                Task task = Task.Run(() => PredictionNuThread(ref count, sensor, start, end, ref svmParams, data, svmParams.Count, ref bestCoveredResult, ref bestResultMu, ref covNu));
                tasks.Add(task);
            }
            await Task.WhenAll(tasks);
            File.WriteAllLines(path + "/Params.txt", new List<string> { bestCoveredResult.parameter.Gamma.ToString(), bestCoveredResult.parameter.Kernel.ToString() });
            File.WriteAllLines(path + $"/{sensor.ToString()}CovNu.txt", covNu.ToList());
            
            bestResultMu.Dispose();
            return bestCoveredResult;
        }
コード例 #3
0
ファイル: AnomalyDetection.cs プロジェクト: Malakahh/BesterUI
        private void PredictionThread(ref int count, SENSOR sensor, int start, int end, ref ConcurrentStack<SVMParameter> svmParams, List<SVMNode[]> data, int svmCount, ref NoveltyResult bestCoveredResult, ref Mutex mutex)
        {
            OneClassClassifier occ = new OneClassClassifier(data);
            List<OneClassFV> anomali = new List<OneClassFV>();
            List<Events> eventResult = new List<Events>();
            List<OneClassFV> outliersFromSam = new List<OneClassFV>();
            int maxCount = svmCount;
            string sensorPath = path + "/" + sensor.ToString();
            foreach (Events p in events)
            {
                var evt = p.Copy();
                eventResult.Add(evt);
            }
            while (!svmParams.IsEmpty)
            {
                SVMParameter svmParam = null;
                svmParams.TryPop(out svmParam);
                if (svmParam == null)
                {
                    break;
                }
                anomali = new List<OneClassFV>();
                occ.CreateModel(svmParam);
                anomali.AddRange(occ.PredictOutliers(featureVectors[sensor].Where(x => start < x.TimeStamp && x.TimeStamp < end).ToList()));
                PointsOfInterest dPointsOfInterest = new PointsOfInterest(anomali);

                foreach (Events evt in eventResult)
                {
                    evt.SetPointOfInterest(dPointsOfInterest);
                }

                NoveltyResult tempResult = new NoveltyResult(dPointsOfInterest, eventResult, start, end, svmParam, anomali);
                /*NoveltyResult.ConfusionMatrix cfm = tempResult.CalculateConfusionMatrix();
                decimal tpr = ((decimal)cfm.TruePostive) / ((decimal)cfm.TruePostive + cfm.FalseNegative);
                decimal fpr = 1 - ((decimal)cfm.TrueNegative / ((decimal)cfm.TrueNegative + cfm.FalsePostive));
                */
                mutex.WaitOne();

                if (bestCoveredResult == null)
                {
                    bestCoveredResult = new NoveltyResult(dPointsOfInterest, eventResult, start, end, svmParam, anomali);
                }
                else if (tempResult.CalculateCoveredScore() > bestCoveredResult.CalculateCoveredScore())
                {
                    //bestResult = new NoveltyResult(dPointsOfInterest, eventResult, start, end, svmParam, anomali); ;
                    bestCoveredResult = tempResult;
                }

                count++;
                SetProgress(count, sensor);
                mutex.ReleaseMutex();
            }
            Log.LogMessage(sensor + " done!");
        }
コード例 #4
0
ファイル: AnomalyDetection.cs プロジェクト: Malakahh/BesterUI
 private async Task<NoveltyResult> DoVotingNoveltyDetection(SENSOR sensor, int start, int end, double nu, string type)
 {
     string sensorPath = path + "/" + sensor.ToString();
     var data = featureVectors[sensor].Select(x => x.Features).ToList();
     ConcurrentStack<SVMParameter> svmParams = new ConcurrentStack<SVMParameter>();
     svmParams.PushRange(GenerateVotingSVMParameters(nu).ToArray());
     SetProgressMax(svmParams.Count + 1);
     NoveltyResult bestResult = null;
     Mutex bestResultMu = new Mutex(false, sensor.ToString());
     int count = 1;
     List<Task> tasks = new List<Task>();
     for (int i = 0; i < threadMAX.Value; i++)
     {
         Task task = Task.Run(() => PredictionVoteThread(ref count, sensor, start, end, ref svmParams, data, svmParams.Count, ref bestResult, bestResultMu, type));
         tasks.Add(task);
     }
     await Task.WhenAll(tasks);
     
     bestResultMu.Dispose();
     return bestResult;
 }