コード例 #1
0
            public static List <Target> bestTarget(Target now, List <Target> targetList)
            {
                List <double>      scores         = targetList.Select(n => fitness(n, now, 10)).ToList();
                RhinoList <Target> targetListCopy = new RhinoList <Target>(targetList);

                targetListCopy.Sort(scores.ToArray());

                return(targetListCopy.ToList());
            }
コード例 #2
0
        private static double maxRectDirection(Plot plot)
        {
            Polyline x;

            plot.Boundary.TryGetPolyline(out x);

            //parameters
            int    gridResolution        = 23;
            int    angleResolution       = 23;
            int    ratioResolution       = 5;
            int    binarySearchIteration = 7;
            double ratioMaximum          = 100;
            int    gridSubResolution     = 4;
            int    angleSubResolution    = 3;
            int    ratioSubResolution    = 4;
            int    subIter           = 4;
            double convergenceFactor = 1.1;

            double maxR         = ratioMaximum;
            int    binaryIter   = binarySearchIteration;
            int    rRes         = ratioResolution;
            double alpha        = 0.01;
            int    edgeAngleNum = 5;

            //sub constants
            double gridDom  = 0.3;
            double angleDom = 0.3;
            double ratioDom = 0.3;

            //plot
            Polyline xcurve    = x;
            Curve    plotCurve = xcurve.ToNurbsCurve();

            //loop start parameters
            double areaMax = 0;

            double  solWidth = 0;
            Point3d solPoint = new Point3d(0, 0, 0);
            double  solR     = 15;
            double  solAngle = 0;

            //output
            List <Point3d>     coreOri   = new List <Point3d>();
            List <Rectangle3d> coreShape = new List <Rectangle3d>();

            //search space
            List <double> angles = new List <double>();

            for (int i = 0; i < angleResolution; i++)
            {
                angles.Add(Math.PI * 2 * i / angleResolution);
            }
            List <Line>      outlineSegments  = x.GetSegments().ToList();
            RhinoList <Line> outSegRL         = new RhinoList <Line>(outlineSegments);
            List <double>    outlineSegLength = outlineSegments.Select(n => n.Length).ToList();

            outSegRL.Sort(outlineSegLength.ToArray());
            outlineSegments = outSegRL.ToList();
            outlineSegments.Reverse();
            for (int i = 0; i < Math.Min(edgeAngleNum, outlineSegments.Count); i++)
            {
                Vector3d vector = outlineSegments[i].UnitTangent;
                if (vector.Y < 0)
                {
                    vector.Reverse();
                }
                double angleTemp = -Math.Acos(Vector3d.Multiply(Vector3d.XAxis, vector));
                angles.Add(angleTemp);
                angles.Add(angleTemp + Math.PI / 2);
            }

            //loop
            for (int ang = 0; ang < angles.Count; ang++)
            {
                Polyline xClone = new Polyline(x);
                xClone.Transform(Transform.Rotation(angles[ang], new Point3d(0, 0, 0)));

                //find bounding box, grid dimensions
                var           bBox  = xClone.BoundingBox;
                Point3d       minP  = bBox.Min;
                Point3d       maxP  = bBox.Max;
                List <double> ressG = new List <double>();
                ressG.Add(maxP.X - minP.X - 2 * alpha);
                ressG.Add(maxP.Y - minP.Y - 2 * alpha);
                List <double> resG = new List <double>(ressG.Select(val => val / gridResolution));

                //1st search
                for (int i = 0; i < gridResolution + 1; i++)
                {
                    //create lines
                    Line lineY = new Line(new Point3d(minP.X + alpha + i * resG[0], minP.Y, 0), new Point3d(minP.X + alpha + i * resG[0], maxP.Y, 0));
                    Line lineX = new Line(new Point3d(minP.X, minP.Y + i + alpha * resG[1], 0), new Point3d(maxP.X, minP.Y + alpha + i * resG[1], 0));

                    //create mid points of segments
                    List <Point3d> midsX = new List <Point3d>(intersectionMids(lineX, xClone));
                    List <Point3d> midsY = new List <Point3d>(intersectionMids(lineY, xClone));
                    List <Point3d> mids  = new List <Point3d>();
                    foreach (Point3d j in midsX)
                    {
                        mids.Add(j);
                    }
                    foreach (Point3d j in midsY)
                    {
                        mids.Add(j);
                    }

                    foreach (Point3d j in mids)
                    {
                        //get max height and max width
                        Line           midlineY = new Line(new Point3d(j.X, minP.Y, 0), new Point3d(j.X, maxP.Y, 0));
                        Line           midlineX = new Line(new Point3d(minP.X, j.Y, 0), new Point3d(maxP.X, j.Y, 0));
                        List <Point3d> widthP   = new List <Point3d>(intersectionPoints(midlineX, xClone));
                        List <Point3d> heightP  = new List <Point3d>(intersectionPoints(midlineY, xClone));
                        List <double>  widthV   = new List <double>();
                        List <double>  heightV  = new List <double>();

                        foreach (Point3d k in widthP)
                        {
                            widthV.Add(k.DistanceTo(j));
                        }
                        foreach (Point3d k in heightP)
                        {
                            heightV.Add(k.DistanceTo(j));
                        }

                        double maxWidth;
                        double maxHeight;
                        if (widthV.Count == 0)
                        {
                            maxWidth = 0;
                        }
                        else
                        {
                            maxWidth = widthV.Min() * 2;
                        }
                        if (heightV.Count == 0)
                        {
                            maxHeight = 0;
                        }
                        else
                        {
                            maxHeight = heightV.Min() * 2;
                        }

                        //binary search
                        double minRatio = Math.Max(areaMax / maxWidth / maxWidth, 1 / maxR);
                        double maxRatio = Math.Min(maxHeight * maxHeight / areaMax, maxR);

                        double r = 1;

                        if (minRatio < maxRatio)
                        {
                            for (int a = -rRes; a < rRes + 1; a++)
                            {
                                if (a < 0)
                                {
                                    r = 1 / (1 + (1 / minRatio - 1) / Math.Pow(2, -a));
                                }
                                else if (a == 1)
                                {
                                    r = 1;
                                }
                                else
                                {
                                    r = 1 + (maxRatio - 1) / Math.Pow(2, a);
                                }

                                //solution boundary

                                List <double> minWidths = new List <double>();
                                minWidths.Add(Math.Sqrt(areaMax / r));

                                double minSolWidth = minWidths.Max();
                                double maxSolWidth = Math.Min(maxWidth, maxHeight / r);
                                double searchWidth = (minSolWidth + maxSolWidth) / 2;
                                double binRes      = searchWidth / 2;
                                //binary
                                if (minSolWidth < maxSolWidth)
                                {
                                    for (int b = 0; b < binaryIter; b++)
                                    {
                                        if (inCheck(j, searchWidth, r, xClone) == 1)
                                        {
                                            if (areaMax < searchWidth * searchWidth * r && searchWidth * searchWidth * r * 4 < PolygonArea(xcurve))
                                            {
                                                areaMax  = searchWidth * searchWidth * r;
                                                solWidth = searchWidth;
                                                solPoint = j;
                                                solR     = r;
                                                solAngle = angles[ang];
                                            }

                                            searchWidth += binRes;
                                        }
                                        else
                                        {
                                            searchWidth -= binRes;
                                        }
                                        binRes /= 2;
                                    }
                                }
                            }
                        }
                    }
                }
            }

            Rectangle3d ohGod = new Rectangle3d(Plane.WorldXY, new Point3d(solPoint.X - solWidth, solPoint.Y - solWidth * solR, 0), new Point3d(solPoint.X + solWidth, solPoint.Y + solWidth * solR, 0));

            ohGod.Transform(Transform.Rotation(-solAngle, new Point3d(0, 0, 0)));

            //2nd search
            double  solWidthNew = solWidth;
            Point3d solPointNew = solPoint;
            double  solRNew     = solR;
            double  solAngleNew = solAngle;
            int     token       = 0;

            while (token < subIter)
            {
                gridDom  /= convergenceFactor;
                angleDom /= convergenceFactor;
                ratioDom /= convergenceFactor;
                for (int ang = -angleSubResolution; ang < angleSubResolution + 1; ang++)
                {
                    double   searchAngle = solAngle + ang * Math.PI / 2 * angleDom / 2 / angleSubResolution;
                    Polyline xCloneNew   = new Polyline(x);
                    xCloneNew.Transform(Transform.Rotation(searchAngle, new Point3d(0, 0, 0)));
                    Curve xCloneNewCurve = xCloneNew.ToNurbsCurve();

                    //find bounding box, grid dimensions
                    var bBox = xCloneNew.BoundingBox;

                    Point3d       minP  = bBox.Min;
                    Point3d       maxP  = bBox.Max;
                    List <double> ressG = new List <double>();
                    ressG.Add(maxP.X - minP.X);
                    ressG.Add(maxP.Y - minP.Y);
                    List <double>  resG = new List <double>(ressG.Select(val => val / (2 * gridSubResolution) * gridDom));
                    List <Point3d> mids = new List <Point3d>();
                    for (int i = -gridSubResolution; i < gridSubResolution + 1; i++)
                    {
                        for (int ii = -gridSubResolution; ii < gridSubResolution + 1; ii++)
                        {
                            Point3d solPointTemp = solPoint;
                            //solPointTemp.Transform(Transform.Rotation(searchAngle, new Point3d(0, 0, 0)));
                            Point3d gridPoint = new Point3d(solPointTemp.X + i * resG[0], solPointTemp.Y + ii * resG[1], 0);
                            if (xCloneNewCurve.Contains(gridPoint) == PointContainment.Inside)
                            {
                                mids.Add(gridPoint);
                            }
                        }
                    }

                    foreach (Point3d j in mids)
                    {
                        //get max height and max width
                        Line           midlineY = new Line(new Point3d(j.X, minP.Y, 0), new Point3d(j.X, maxP.Y, 0));
                        Line           midlineX = new Line(new Point3d(minP.X, j.Y, 0), new Point3d(maxP.X, j.Y, 0));
                        List <Point3d> widthP   = new List <Point3d>(intersectionPoints(midlineX, xCloneNew));
                        List <Point3d> heightP  = new List <Point3d>(intersectionPoints(midlineY, xCloneNew));
                        List <double>  widthV   = new List <double>();
                        List <double>  heightV  = new List <double>();
                        foreach (Point3d k in widthP)
                        {
                            widthV.Add(k.DistanceTo(j));
                        }
                        foreach (Point3d k in heightP)
                        {
                            heightV.Add(k.DistanceTo(j));
                        }
                        double maxWidth  = widthV.Min();
                        double maxHeight = heightV.Min();

                        //binary search

                        double r;

                        for (int a = -ratioSubResolution; a < ratioSubResolution + 1; a++)
                        {
                            r = solR * (1 + a * ratioDom / ratioSubResolution);
                            //solution boundary
                            List <double> minWidths = new List <double>();
                            minWidths.Add(Math.Sqrt(areaMax / r));

                            double minSolWidth = minWidths.Max();
                            double maxSolWidth = Math.Min(maxWidth, maxHeight / r);
                            double searchWidth = (minSolWidth + maxSolWidth) / 2;
                            double binRes      = searchWidth / 2;
                            //binary
                            if (minSolWidth < maxSolWidth)
                            {
                                for (int b = 0; b < binaryIter; b++)
                                {
                                    if (inCheck(j, searchWidth, r, xCloneNew) == 1)
                                    {
                                        if (areaMax < searchWidth * searchWidth * r && searchWidth * searchWidth * r * 4 < PolygonArea(xcurve))
                                        {
                                            areaMax     = searchWidth * searchWidth * r;
                                            solWidthNew = searchWidth;
                                            solPointNew = j;
                                            solRNew     = r;
                                            solAngleNew = searchAngle;
                                        }

                                        searchWidth += binRes;
                                    }
                                    else
                                    {
                                        searchWidth -= binRes;
                                    }
                                    binRes /= 2;
                                }
                            }
                        }
                    }
                }
                solWidth = solWidthNew;
                solPoint = solPointNew;
                solR     = solRNew;
                solAngle = solAngleNew;
                token   += 1;
            }

            solPoint.Transform(Transform.Rotation(-solAngle, new Point3d(0, 0, 0)));


            Rectangle3d ohGoditsworkingNew = new Rectangle3d(Plane.WorldXY, new Point3d(solPointNew.X - solWidthNew, solPointNew.Y - solWidthNew * solRNew, 0), new Point3d(solPointNew.X + solWidthNew, solPointNew.Y + solWidthNew * solRNew, 0));

            ohGoditsworkingNew.Transform(Transform.Rotation(-solAngleNew, new Point3d(0, 0, 0)));
            Rectangle3d    outlineRectangle = ohGoditsworkingNew;
            List <Point3d> pts     = new List <Point3d>(outlineRectangle.ToPolyline());
            Vector3d       vectorT = Vector3d.Subtract(new Vector3d(pts[0]), new Vector3d(pts[1]));

            if (vectorT.Y < 0)
            {
                vectorT.Reverse();
            }
            double outAngleTemp = -Math.Acos(Vector3d.Multiply(Vector3d.XAxis, Vector3d.Multiply(vectorT, 1 / vectorT.Length)));

            return(outAngleTemp);
        }
コード例 #3
0
        public static List <Apartment> giantAnteater(Plot plot, ApartmentGeneratorBase ag, Target target, bool previewOn)
        {
            double mutationProbability = ag.GAParameterSet[0];
            double elitismPercentage   = ag.GAParameterSet[1];
            double initialBoost        = ag.GAParameterSet[2];
            int    population          = (int)ag.GAParameterSet[3];
            int    maxGen         = (int)ag.GAParameterSet[4];
            double fitnessFactor  = ag.GAParameterSet[5];
            double mutationFactor = ag.GAParameterSet[6];

            //Initialize Minimum and Maximum value
            double[] tempMaxInput = ag.MaxInput.Clone() as double[];
            double[] tempMinInput = ag.MinInput.Clone() as double[];

            //create initial genes
            Random myRandom  = new Random((int)DateTime.Now.Ticks);
            double goodAngle = maxRectDirection(plot);

            //double goodAngle = Math.PI * 152 / 180;

            List <ParameterSet> offspringGenes = new List <ParameterSet>();

            //for (int i = 0; i < initialBoost; i++)
            //{
            //    CoreType tempCoreType = ag.GetRandomCoreType();

            //    double[] oneGene = new double[ag.MinInput.Length];

            //    //if (ag.IsCoreProtrude)
            //    //    tempMaxInput[2] = tempCoreType.GetDepth();

            //    for (int j = 0; j < ag.MinInput.Length; j++)
            //    {
            //        if (i % 2 == 0 && j == 3 && ag.GetType() == typeof(AG1))
            //        {
            //            oneGene[j] = goodAngle;
            //        }
            //        else
            //        {
            //            double parameterForGene = (tempMaxInput[j] - tempMinInput[j]) * myRandom.NextDouble() + tempMinInput[j];
            //            oneGene[j] = parameterForGene;
            //        }

            //        oneGene[0] = Math.Floor(oneGene[0]);
            //        oneGene[1] = Math.Floor(oneGene[1]);

            //    }

            //    ParameterSet a = new ParameterSet(oneGene, ag.GetType().ToString(), tempCoreType);
            //    offspringGenes.Add(a);
            //}

            double otherAngles = population * initialBoost;//(population - 1) * initialBoost;

            for (int i = 0; i < (int)otherAngles; i++)
            {
                CoreType tempCoreType = ag.GetRandomCoreType();

                double[] oneGene = new double[ag.MinInput.Length];

                //if (ag.IsCoreProtrude)
                //    tempMaxInput[2] = tempCoreType.GetDepth();

                for (int j = 0; j < ag.MinInput.Length; j++)
                {
                    if (/*i % 2 == 0 &&*/ j == 3 && ag.GetType() == typeof(AG1))
                    {
                        double parameterForGene = ((goodAngle + Math.PI / 2 * (i % 4) / 2) % (Math.PI * 2) + Math.PI * ((int)(i / 4) % 2) % (Math.PI * 2));
                        //oneGene[j] = parameterForGene;
                        //double mainAngle = Math.PI * i / otherAngles;
                        //oneGene[j] = mainAngle;
                        oneGene[j] = parameterForGene;
                    }
                    else
                    {
                        double parameterForGene = (tempMaxInput[j] - tempMinInput[j]) * myRandom.NextDouble() + tempMinInput[j];

                        //width - 100씩
                        if (j == 2)
                        {
                            parameterForGene = Math.Round(parameterForGene / 100) * 100;
                        }
                        oneGene[j] = parameterForGene;
                    }

                    oneGene[0] = Math.Floor(oneGene[0]);
                    oneGene[1] = Math.Floor(oneGene[1]);
                }

                ParameterSet a = new ParameterSet(oneGene);
                offspringGenes.Add(a);
            }

            //initializing end condition
            bool endCondition = true;

            //start genetic algorithm
            int          genCount = 0;
            ParameterSet bestGene = offspringGenes[0];

            while (endCondition)
            {
                //evaluate fitness`
                List <List <double> > evaluation    = new List <List <double> >(evaluateFitness(plot, ag, target, offspringGenes, fitnessFactor, previewOn));
                List <double>         fitnessValues = new List <double>(evaluation[0]);

                //sort genes and fitness values
                RhinoList <ParameterSet> myRhinoList = new RhinoList <ParameterSet>(offspringGenes);
                myRhinoList.Sort(fitnessValues.ToArray());
                myRhinoList.Reverse();
                fitnessValues.Sort();
                fitnessValues.Reverse();
                offspringGenes = myRhinoList.ToList();

                var radcheck = offspringGenes.Select(n => n.Parameters[3]);

                /*
                 * //write
                 * Rhino.RhinoApp.WriteLine(genCount.ToString());
                 * Rhino.RhinoApp.WriteLine(evaluation[1][0].ToString());
                 * Rhino.RhinoApp.WriteLine(evaluation[1][offspringGenes.Count-1].ToString());
                 * ParameterSet geneToShow = offspringGenes[0];
                 *
                 * for (int i = 0; i < geneToShow.Parameters.Length; i++)
                 * {
                 *  Rhino.RhinoApp.WriteLine(geneToShow.Parameters[i].ToString());
                 * }
                 */

                //create new generation
                List <ParameterSet> tempGenes = new List <ParameterSet>();

                //Add elites to new generation
                int eliteNum = (int)(population * elitismPercentage);
                for (int i = 0; i < eliteNum; i++)
                {
                    tempGenes.Add(offspringGenes[i]);
                }

                //crossover & mutation
                for (int i = 0; i < population - eliteNum; i++)
                {
                    ParameterSet newOffspring = crossover(offspringGenes, fitnessValues, (int)myRandom.Next(0, int.MaxValue), ag.GetType().ToString());
                    if (myRandom.NextDouble() < mutationProbability)
                    {
                        newOffspring = mutation(newOffspring, ag, mutationFactor, (int)myRandom.Next(0, int.MaxValue));
                    }
                    tempGenes.Add(newOffspring);
                }
                offspringGenes = tempGenes;

                genCount += 1;
                if (genCount == maxGen)
                {
                    endCondition = false;
                }

                GC.Collect();
                //Rhino.RhinoApp.Wait();

                //finalize before end
                if (endCondition == false)
                {
                    //evaluate fitness
                    evaluation    = new List <List <double> >(evaluateFitness(plot, ag, target, offspringGenes, fitnessFactor, previewOn));
                    fitnessValues = new List <double>(evaluation[0]);

                    //sort genes and fitness values
                    myRhinoList = new RhinoList <ParameterSet>(offspringGenes);
                    myRhinoList.Sort(fitnessValues.ToArray());
                    myRhinoList.Reverse();
                    fitnessValues.Sort();
                    fitnessValues.Reverse();
                    offspringGenes = myRhinoList.ToList();



                    bestGene = offspringGenes[0];
                }

                Rhino.RhinoApp.Wait();
            }

            //best 1
            Apartment bestOutput = ag.generator(plot, bestGene, target);

            return(new Apartment[] { bestOutput }.ToList());

            //best 5
            //var uniqueGenes = offspringGenes.Distinct();
            //Apartment[] bestOutputs = offspringGenes.Take(5).Select(n => ag.generator(plot, n, target)).ToArray();
            //return bestOutputs.ToList();


            //best 10
            //var uniqueGenes = offspringGenes.Distinct();
            //Apartment[] bestOutputs = offspringGenes.Take(10).Select(n=>ag.generator(plot, n, target)).ToArray();
            //return new Apartment[] { bestOutput }.ToList();
            //return bestOutputs.ToList();

            //all
            Apartment[] bestOutputs = offspringGenes.Select(n => ag.generator(plot, n, target)).ToArray();
            return(bestOutputs.ToList());

            if (bestOutput.ParameterSet == null)
            {
                return(FinalizeApartment.finalizeAGoutput(bestOutput, TuringAndCorbusierPlugIn.InstanceClass.page1Settings.MaxFloorAreaRatio, TuringAndCorbusierPlugIn.InstanceClass.page1Settings.MaxBuildingCoverage, false));
            }

            if (bestOutput.ParameterSet.Parameters != null)
            {
                List <Apartment> output = FinalizeApartment.finalizeAGoutput(bestOutput, TuringAndCorbusierPlugIn.InstanceClass.page1Settings.MaxFloorAreaRatio, TuringAndCorbusierPlugIn.InstanceClass.page1Settings.MaxBuildingCoverage, false);

                bool IsSatisfyingLegalParking = false;

                List <Apartment> satisFyingLegalParkingOutput = new List <Apartment>();

                foreach (Apartment i in output)
                {
                    if (i.GetLegalParkingLotOfCommercial() + i.GetLegalParkingLotofHousing() < i.ParkingLotOnEarth.GetCount() + i.ParkingLotUnderGround.Count)
                    {
                        satisFyingLegalParkingOutput.Add(i);
                        IsSatisfyingLegalParking = true;
                    }
                }

                if (IsSatisfyingLegalParking == false)
                {
                    targetError      tempErrorMessage = new targetError();
                    List <Apartment> tempNewOutput    = tempErrorMessage.showDialogAndReturnValue(ag, plot, bestGene, target, output);

                    bool tempSatisfyingLegalParking = false;

                    List <Apartment> tempSatisFyingLegalParkingOutput = new List <Apartment>();

                    foreach (Apartment i in tempNewOutput)
                    {
                        if (i.GetLegalParkingLotOfCommercial() + i.GetLegalParkingLotofHousing() < i.ParkingLotOnEarth.GetCount() + i.ParkingLotUnderGround.Count)
                        {
                            tempSatisfyingLegalParking = true;
                            tempSatisFyingLegalParkingOutput.Add(i);
                        }
                    }

                    if (tempSatisfyingLegalParking == false)
                    {
                        System.Windows.MessageBox.Show("선택한 설계로 법정 주차대수를 만족하기 어려운 대지입니다.");

                        return(output);
                    }
                    else
                    {
                        return(tempSatisFyingLegalParkingOutput);
                    }
                }
                else
                {
                    return(output);
                }
            }
            else
            {
                System.Windows.MessageBox.Show(CommonFunc.GetApartmentType(ag.GetAGType) + " 타입 설계에 적합하지 않은 대지입니다.");
            }

            return(FinalizeApartment.finalizeAGoutput(bestOutput, TuringAndCorbusierPlugIn.InstanceClass.page1Settings.MaxFloorAreaRatio, TuringAndCorbusierPlugIn.InstanceClass.page1Settings.MaxBuildingCoverage, false));
        }