public void RealizeEvolution() { Random random = new Random(); Initialisation initialisation = new Initialisation(initialPopulationCount); // Initialisation - validated List <Path> population = initialisation.GenerateInitialPopulation(); for (int i = 0; i < population.Count; i++) { if (StaticOperations.ValidatePath(population[i]) == false) { throw new NotSupportedException(); } } // Evaluation Evaluation evaluation = new Evaluation(); evaluation.EvaluatePopulation(population); // Encoding List <Representation> representations = new List <Representation>(); Decoder decoder = new Decoder(); foreach (Path path in population) { Representation representation = decoder.EncodePath(path); representations.Add(representation); } // Evolution cycle for (int i = 0; i < evolutionCycles; i++) { Console.Write("Epoch #" + i + "."); // Reinitialisation happens every 1/10th iteration and randomly resets half of population // Elite 10% is untouched by this process if ((i % 500) == 0 && i != 0) { ReinitializePopulation(representations, (int)(3 * initialPopulationCount / 4)); } // Remap fitness using exponential remapping //RemapFitness(representations, remapParameter); // Selection Selection selection = new Selection(parentsCount, representations); List <Representation> parents = selection.SelectParents(); //List<Representation> parents = selection.SelectCombinedParents(); // Genetic operator - validated GeneticOperator geneticOperator = new GeneticOperator(descendantsCount, parents); List <Representation> descendants = geneticOperator.GenerateDescendants(); // Decoding List <Path> descendantPaths = new List <Path>(); foreach (Representation representation in descendants) { Path path = decoder.DecodeRepresentation(representation); if (StaticOperations.ValidatePath(path) == false) { throw new NotSupportedException(); } descendantPaths.Add(path); } // Evaluation evaluation.EvaluatePopulation(descendantPaths); for (int j = 0; j < descendants.Count; j++) { descendants[j].Fitness = descendantPaths[j].Fitness; } // Revaluate current population after fitness remapping //List<Path> currentPaths = new List<Path>(); //foreach (Representation representation in representations) //{ // Path path = decoder.DecodeRepresentation(representation); // currentPaths.Add(path); //} //evaluation.EvaluatePopulation(currentPaths); //for (int j = 0; j < representations.Count; j++) //{ // representations[j].Fitness = currentPaths[j].Fitness; //} // Replacement Replacement replacement = new Replacement(representations, descendants, initialPopulationCount); //representations = replacement.GenerationReplacement(); //representations = replacement.NextGeneration(); representations = replacement.DuplicationElimination(7, representations.Count / 20 < 3 ? representations.Count / 20 : 3, 20); Console.Write(" Maximum fitness: " + representations.Max(item => item.Fitness)); // Save to export file SaveSixBestMembers(representations); } }