コード例 #1
0
        public static BackpropAlgorithm CreateKaggleCatOrDogFiltersDemo1_Pretrained(string fpath)
        {
            Console.WriteLine("init CreateKaggleCatOrDogFiltersDemo1_Pretrained");

            ConvNet net;
            var     assembly = Assembly.GetExecutingAssembly();

            using (var stream = System.IO.File.Open(fpath, System.IO.FileMode.Open, System.IO.FileAccess.Read))
            {
                net            = ConvNet.Deserialize(stream);
                net.IsTraining = true;
            }

            var lrate = 0.001D;
            var alg   = new BackpropAlgorithm(net)
            {
                LossFunction            = Loss.CrossEntropySoftMax,
                EpochCount              = 500,
                LearningRate            = lrate,
                BatchSize               = 8,
                UseBatchParallelization = true,
                MaxBatchThreadCount     = 8,
                Optimizer               = Optimizer.Adadelta,
                Regularizator           = Regularizator.L2(0.001D),
                LearningRateScheduler   = LearningRateScheduler.DropBased(lrate, 5, 0.5D)
            };

            alg.Build();

            return(alg);
        }
コード例 #2
0
        public static BackpropAlgorithm CreateMainColorsDemo1()
        {
            Console.WriteLine("init CreateMainColorsDemo1");
            var activation = Activation.ReLU;
            var net        = new ConvNet(3, 48)
            {
                IsTraining = true
            };

            net.AddLayer(new FlattenLayer(outputDim: 128, activation: activation));
            net.AddLayer(new FlattenLayer(outputDim: 128, activation: activation));
            net.AddLayer(new DenseLayer(outputDim: 12, activation: activation));

            net._Build();

            net.RandomizeParameters(seed: 0);

            var lrate = 1.1D;
            var alg   = new BackpropAlgorithm(net)
            {
                EpochCount              = 500,
                LearningRate            = lrate,
                BatchSize               = 8,
                UseBatchParallelization = true,
                MaxBatchThreadCount     = 8,
                LossFunction            = Loss.Euclidean,
                Optimizer               = Optimizer.Adadelta,
                Regularizator           = Regularizator.L2(0.0001D),
                LearningRateScheduler   = LearningRateScheduler.DropBased(lrate, 5, 0.5D)
            };

            alg.Build();

            return(alg);
        }
コード例 #3
0
        /// <summary>
        /// Error: 19.1
        /// </summary>
        public static BackpropAlgorithm CreateKaggleCatOrDogDemo_Pretrained()
        {
            Console.WriteLine("init CreateKaggleCatOrDogDemo_Pretrained");

            ConvNet net;
            var     assembly = Assembly.GetExecutingAssembly();

            using (var stream = assembly.GetManifestResourceStream("ML.DeepTests.Pretrained.cn_e16_p37.65.mld"))
            {
                net            = ConvNet.Deserialize(stream);
                net.IsTraining = true;
            }

            var lrate = 0.01D;
            var alg   = new BackpropAlgorithm(net)
            {
                LossFunction            = Loss.CrossEntropySoftMax,
                EpochCount              = 500,
                LearningRate            = lrate,
                BatchSize               = 4,
                UseBatchParallelization = true,
                MaxBatchThreadCount     = 8,
                Optimizer               = Optimizer.Adadelta,
                Regularizator           = Regularizator.L2(0.001D),
                LearningRateScheduler   = LearningRateScheduler.DropBased(lrate, 5, 0.5D)
            };

            alg.Build();

            return(alg);
        }
コード例 #4
0
        public void Gradient_DifferentLayers_1Iter_CrossEntropy_Regularization()
        {
            // arrange

            var activation = Activation.ReLU;
            var net        = new ConvNet(1, 5)
            {
                IsTraining = true
            };

            net.AddLayer(new ConvLayer(outputDepth: 2, windowSize: 3, padding: 1));
            net.AddLayer(new MaxPoolingLayer(windowSize: 3, stride: 2, activation: Activation.Exp));
            net.AddLayer(new ActivationLayer(activation: Activation.Tanh));
            net.AddLayer(new FlattenLayer(outputDim: 10, activation: activation));
            net.AddLayer(new DropoutLayer(rate: 0.5D));
            net.AddLayer(new DenseLayer(outputDim: 3, activation: Activation.Exp));

            net._Build();

            net.RandomizeParameters(seed: 0);

            var sample = new ClassifiedSample <double[][, ]>();

            for (int i = 0; i < 3; i++)
            {
                var point = RandomPoint(1, 5, 5);
                sample[point] = new Class(i.ToString(), i);
            }

            var regularizator = Regularizator.Composite(Regularizator.L1(0.1D), Regularizator.L2(0.3D));
            var alg           = new BackpropAlgorithm(net)
            {
                LearningRate  = 0.1D,
                LossFunction  = Loss.CrossEntropySoftMax,
                Regularizator = regularizator
            };

            alg.Build();

            // act
            var data     = sample.First();
            var expected = new double[3] {
                1.0D, 0.0D, 0.0D
            };

            alg.RunIteration(data.Key, expected);
            regularizator.Apply(alg.Gradient, alg.Net.Weights);
            ((DropoutLayer)alg.Net[4]).ApplyCustomMask = true;

            // assert
            AssertNetGradient(alg, data.Key, expected);
        }
コード例 #5
0
        /// <summary>
        /// Error 21.65
        /// </summary>
        public static BackpropAlgorithm CreateCIFAR10Trunc2ClassesDemo2_SEALED()
        {
            Console.WriteLine("init CreateCIFAR10Trunc2ClassesDemo2");

            var activation = Activation.ReLU;
            var net        = new ConvNet(3, 32)
            {
                IsTraining = true
            };

            net.AddLayer(new ConvLayer(outputDepth: 16, windowSize: 3, padding: 1, activation: activation));
            net.AddLayer(new ConvLayer(outputDepth: 16, windowSize: 3, padding: 1, activation: activation));
            net.AddLayer(new MaxPoolingLayer(windowSize: 3, stride: 2));
            net.AddLayer(new DropoutLayer(0.25));

            net.AddLayer(new ConvLayer(outputDepth: 32, windowSize: 3, padding: 1, activation: activation));
            net.AddLayer(new ConvLayer(outputDepth: 32, windowSize: 3, padding: 1, activation: activation));
            net.AddLayer(new MaxPoolingLayer(windowSize: 3, stride: 2));
            net.AddLayer(new DropoutLayer(0.25));

            net.AddLayer(new FlattenLayer(outputDim: 256, activation: activation));
            net.AddLayer(new DropoutLayer(0.5));
            net.AddLayer(new DenseLayer(outputDim: 2, activation: Activation.Exp));

            net._Build();

            net.RandomizeParameters(seed: 0);

            var lrate = 0.01D;
            var alg   = new BackpropAlgorithm(net)
            {
                LossFunction            = Loss.CrossEntropySoftMax,
                EpochCount              = 500,
                LearningRate            = lrate,
                BatchSize               = 4,
                UseBatchParallelization = true,
                MaxBatchThreadCount     = 8,
                Optimizer               = Optimizer.Adadelta,
                Regularizator           = Regularizator.L2(0.001D),
                LearningRateScheduler   = LearningRateScheduler.DropBased(lrate, 5, 0.5D)
            };

            alg.Build();

            return(alg);
        }
コード例 #6
0
        /// <summary>
        /// Error = 0.92
        /// </summary>
        public static BackpropAlgorithm CreateMNISTSimpleDemo_SEALED()
        {
            Console.WriteLine("init CreateMNISTSimpleDemo_SEALED");
            var activation = Activation.LeakyReLU();
            var net        = new ConvNet(1, 28)
            {
                IsTraining = true
            };

            net.AddLayer(new ConvLayer(outputDepth: 12, windowSize: 5, padding: 2));
            net.AddLayer(new ConvLayer(outputDepth: 12, windowSize: 5, padding: 2));
            net.AddLayer(new MaxPoolingLayer(windowSize: 2, stride: 2, activation: activation));
            net.AddLayer(new ConvLayer(outputDepth: 24, windowSize: 5, padding: 2));
            net.AddLayer(new MaxPoolingLayer(windowSize: 2, stride: 2, activation: activation));
            net.AddLayer(new FlattenLayer(outputDim: 32, activation: activation));
            net.AddLayer(new DropoutLayer(rate: 0.5D));
            net.AddLayer(new DenseLayer(outputDim: 10, activation: activation));

            net._Build();

            net.RandomizeParameters(seed: 0);

            var lrate = 0.001D;
            var alg   = new BackpropAlgorithm(net)
            {
                EpochCount              = 500,
                LearningRate            = lrate,
                BatchSize               = 4,
                UseBatchParallelization = true,
                MaxBatchThreadCount     = 4,
                LossFunction            = Loss.Euclidean,
                Optimizer               = Optimizer.RMSProp,
                Regularizator           = Regularizator.L2(0.0001D),
                LearningRateScheduler   = LearningRateScheduler.DropBased(lrate, 5, 0.5D)
            };

            alg.Build();

            return(alg);
        }