コード例 #1
0
        private void openRegressionModelsDatabaseToolStripMenuItem_Click(object sender, EventArgs e)
        {
            var allModels   = _databaseHelper.GetAllRegressionModels();
            var loginResult = new AuthorizationRegressionAnalysis().ShowDialog();
            RegressionModelsDatabase databaseForm;

            switch (loginResult)
            {
            case DialogResult.Yes:
                databaseForm = new RegressionModelsDatabase(_databaseHelper, allModels, true);
                break;

            case DialogResult.No:
                databaseForm = new RegressionModelsDatabase(_databaseHelper, allModels, false);
                break;

            default: return;
            }
            var result = databaseForm.ShowDialog();

            if (result == DialogResult.OK)
            {
                var selectedModel = databaseForm.SelectedEquation;
                if (selectedModel.IsLinearRegression)
                {
                    _linearEquation = selectedModel;
                    ShowLinearRegressionModel();
                }
                else
                {
                    _multipleRegressionEquation = selectedModel;
                    ShowMultipleRegressionModel();
                }
            }
        }
コード例 #2
0
 private void SaveRegressionModel(RegressionModelEquation model)
 {
     if (model == null)
     {
         MessageBox.Show("There is no model to save!");
         return;
     }
     ModelNameDateSelection.GetRegressionModelSaveInfo(out string name, out DateTime creationDate);
     _databaseHelper.AddRegressionModel(model, name, creationDate);
     MessageBox.Show($"Regression model {name} successfully saved!");
 }
コード例 #3
0
        void DrawMainChart(List <PointD> points, bool writeModel)
        {
            double[] linearRegression = Regression.LinearRegression(points, checkBoxNormalizeValuesPage1.Checked);
            var      rmse             = Regression.RMSE(points, linearRegression[1], linearRegression[0]);
            var      series           = chartRegressionModel.Series["SourceData"];

            series.Points.Clear();
            foreach (var point in points)
            {
                series.Points.AddXY(point.X, point.Y, point.Y, linearRegression[0] + linearRegression[1] * point.X);
            }
            double minX = (int)points.Min(item => item.X);
            double maxX = (int)points.Max(item => item.X);
            double minY = (int)points.Min(item => item.Y);
            double maxY = (int)points.Max(item => item.Y);

            if (writeModel)
            {
                _linearEquation = new RegressionModelEquation("DefaultName", linearRegression, rmse, minX, maxX, minY,
                                                              maxY,
                                                              comboBoxInputParams.SelectedItem.ToString(), comboBoxQualityParams.SelectedItem.ToString(), checkBoxNormalizeValuesPage1.Checked);
            }

            _linearEquation.GetLinearRegressionModelInfo(out string modelText, out string xAxisTitle, out string yAxisTitle, out double[] coefficients, out minX, out maxX, out string rmseString, out bool normalizeValues);
            labelEquasion.Text = modelText;
            labelRMSE.Text     = rmseString;
            checkBoxNormalizeValuesPage1.Checked = normalizeValues;

            chartRegressionModel.ChartAreas["ChartAreaMain"].AxisX.Title    = xAxisTitle;
            chartRegressionModel.ChartAreas["ChartAreaMain"].AxisY.Title    = yAxisTitle;
            chartRegressionModel.ChartAreas["ChartAreaMain"].AxisX.Minimum  = minX - 1;
            chartRegressionModel.ChartAreas["ChartAreaMain"].AxisX.Maximum  = maxX + 1;
            chartRegressionModel.ChartAreas["ChartAreaMain"].AxisY.Minimum  = minY - 1;
            chartRegressionModel.ChartAreas["ChartAreaMain"].AxisY.Maximum  = maxY + 1;
            chartRegressionModel.ChartAreas["ChartAreaMain"].AxisX.Interval = (maxX - minX + 2) / LineChartXAxisIntervalsCount;
            chartRegressionModel.ChartAreas["ChartAreaMain"].AxisY.Interval = (maxY - minY + 2) / LineChartYAxisIntervalsCount;

            DrawMainChartLine(linearRegression, minX - 1, maxX + 1, minY - 1, maxY + 1);
        }
コード例 #4
0
        private void CreateInputParametersTable(RegressionModelEquation model)
        {
            DataTable table = new DataTable();

            table.Columns.Add("ParamId", typeof(string));
            table.Columns.Add("ParamName", typeof(string));
            table.Columns.Add("ParamCoefficient", typeof(double));
            table.Columns.Add("ParamUpperBound", typeof(string));
            table.Columns.Add("ParamLowerBound", typeof(string));

            foreach (var parameter in model.InputParameters)
            {
                table.Rows.Add(parameter.Id.HasValue ? parameter.Id.Value.ToString() : string.Empty,
                               parameter.Id.HasValue
                        ? XMLWork.FindNameWithID(parameter.Id.Value, Properties.Settings.Default.Languages)
                        : "free term", Math.Round(parameter.Coefficient, EquationSignificantDigitsCount),
                               parameter.UpperBound.HasValue ? Math.Round(parameter.UpperBound.Value, EquationSignificantDigitsCount).ToString() : string.Empty,
                               parameter.LowerBound.HasValue ? Math.Round(parameter.LowerBound.Value, EquationSignificantDigitsCount).ToString() : string.Empty);
            }

            dataGridViewInputParametersInfo.DataSource = table;
        }
コード例 #5
0
        bool GetMultipleRegressionModel(string qualityParam)
        {
            double[,] processParametersData;
            double[] qualityParameterData;

            var inputParametersToCheck = checkedListBoxInputParametersToCheckPage3.CheckedItems.Cast <string>().ToList();
            int qualityParameterID     = XMLWork.FindIDWithName(qualityParam, Properties.Settings.Default.Languages);

            processParametersData = new double[TrainData.Train.Count, inputParametersToCheck.Count + 1];
            qualityParameterData  = new double[TrainData.Train.Count];
            //Setting first column of input values of regression matrix X with "1" values
            for (int i = 0; i < processParametersData.GetLength(0); i++)
            {
                processParametersData[i, 0] = 1;
            }

            List <double> parametersLowerBounds = new List <double>(), parametersUpperBounds = new List <double>();

            //Setting all input data
            for (int paramNumber = 0; paramNumber < inputParametersToCheck.Count; paramNumber++)
            {
                double minValue = double.MaxValue, maxValue = double.MinValue;
                int    inputParameterID = XMLWork.FindIDWithName(inputParametersToCheck[paramNumber], Properties.Settings.Default.Languages);
                for (int rowNumber = 0; rowNumber < TrainData.Train.Count; rowNumber++)
                {
                    processParametersData[rowNumber, paramNumber + 1] =
                        (double)TrainData.Train[rowNumber].Input[inputParameterID];
                    if (processParametersData[rowNumber, paramNumber + 1] < minValue)
                    {
                        minValue = processParametersData[rowNumber, paramNumber + 1];
                    }
                    if (processParametersData[rowNumber, paramNumber + 1] > maxValue)
                    {
                        maxValue = processParametersData[rowNumber, paramNumber + 1];
                    }
                }
                parametersLowerBounds.Add(minValue);
                parametersUpperBounds.Add(maxValue);
            }

            //Setting output data
            for (int i = 0; i < TrainData.Train.Count; i++)
            {
                qualityParameterData[i] = (double)TrainData.Train[i].Output[qualityParameterID];
            }

            //Call for multiple regression calculation method
            try
            {
                for (int j = 1; j < processParametersData.GetLength(1); j++)
                {
                    bool throwData = true;
                    for (int i = 0; i < processParametersData.GetLength(0); i++)
                    {
                        if (Math.Abs(processParametersData[i, j]) > DataSensitivityThreshhold)
                        {
                            throwData = false;
                            break;
                        }
                    }
                    if (throwData)
                    {
                        throw new Exception("Incorrect input data");
                    }
                }
                if (!qualityParameterData.Any(item => Math.Abs(item) > DataSensitivityThreshhold))
                {
                    throw new Exception("Incorrect input data");
                }
                var coefficients = Regression.MultipleRegression(processParametersData, qualityParameterData, checkBoxNormalizeValuesPage3.Checked);

                double rmse = Regression.MultipleRMSE(processParametersData, qualityParameterData, coefficients);
                labelRMSEPage3.Text = $"RMSE = {Math.Round(rmse, RMSESignificantDigitsCount)}";

                _multipleRegressionEquation = new RegressionModelEquation("DefaultName", qualityParam,
                                                                          inputParametersToCheck, rmse, coefficients,
                                                                          inputParametersToCheck.ToArray(), parametersLowerBounds.ToArray(), parametersUpperBounds.ToArray(), checkBoxNormalizeValuesPage3.Checked);

                ShowRegressionEquasion(qualityParam, coefficients);
                ShowRegressionEquasionHelp(inputParametersToCheck.ToArray());
                return(true);
            }
            catch (Exception ex)
            {
                MessageBox.Show($"Exception thrown in multiple regression calculation: \"{ex.Message}\"!");
                return(false);
            }
        }