private static IRecognitionStep getStep(string name) { Console.WriteLine("Loading stage: " + name); switch (name) { case "cls": return(RecognitionPipeline.createDefaultClassifier()); case "grp": return(RecognitionPipeline.createDefaultGrouper()); case "rec": return(RecognitionPipeline.createDefaultRecognizer()); case "con": return(RecognitionPipeline.createDefaultConnector()); case "ref": return(RecognitionPipeline.createDefaultRefiner()); case "ref_ctx": return(new ContextRefiner(ContextDomain.CircuitDomain.GetInstance(), RecognitionPipeline.createDefaultRecognizer())); case "ref_cctx": return(new CarefulContextRefiner(ContextDomain.CircuitDomain.GetInstance(), RecognitionPipeline.createDefaultRecognizer())); case "ref_steal": return(new StrokeStealRefiner(RecognitionPipeline.createDefaultRecognizer(), RecognitionPipeline.createDefaultConnector())); case "ref_shed": return(new StrokeShedRefiner(RecognitionPipeline.createDefaultRecognizer(), RecognitionPipeline.createDefaultConnector())); case "ref_search": var producer = new CircuitSketchModificationProducer( RecognitionPipeline.createDefaultClassifier(), RecognitionPipeline.createDefaultGateRecognizer(), RecognitionPipeline.createDefaultConnector()); return(new SearchRefiner(producer)); } TestRig.ExitWithError("No step exists called '" + name + "'! Valid steps are: cls, grp, rec, con, ref, ref_ctx, ref_cctx, ref_steal, ref_shed, ref_search"); return(null); }
/// <summary> /// Create a ClassifyStage. /// </summary> public ClassifyStage() { name = "Classifier"; shortname = "cls"; _results = new Table(new string[] { "Test File", "Substrokes", "Correct" }); _confusion = new ConfusionMatrix <string>(); outputFiletype = ".csv"; // comma-separated values; readable by Excel _pipeline = new RecognitionPipeline(); _pipeline.addStep(RecognitionPipeline.createDefaultClassifier()); }
/// <summary> /// Initializes the pipeline after arguments have been processed. /// </summary> public override void start() { if (_isPure) { Console.WriteLine("Grouping test will be pure"); } else { Console.WriteLine("Grouping test will be impure"); _pipeline.addStep(RecognitionPipeline.createDefaultClassifier()); } _pipeline.addStep(RecognitionPipeline.createDefaultGrouper()); }
/// <summary> /// Initializes the pipeline after arguments have been processed. /// </summary> public override void start() { //_recognizer = Recognizers.AdaptiveImageRecognizer.Load("SubRecognizers\\ImageRecognizer\\AdaptiveImage.air"); _recognizer = RecognitionPipeline.createDefaultRecognizer(); if (_isPure) { Console.WriteLine("Symbol recognition test will be pure"); } else { Console.WriteLine("Symbol recognition test will be impure"); _pipeline.addStep(RecognitionPipeline.createDefaultClassifier()); _pipeline.addStep(RecognitionPipeline.createDefaultGrouper()); } _pipeline.addStep(_recognizer); if (_useRefinement) { Console.WriteLine("Symbol recognition test will use the refiner"); Connector connector = RecognitionPipeline.createDefaultConnector(); RecognitionInterfaces.IRecognitionStep refiner = RecognitionPipeline.createDefaultRefiner(connector, _recognizer); _pipeline.addStep(connector); _pipeline.addStep(refiner); } else { Console.WriteLine("Symbol recognition test will NOT use the refiner"); } if (_useLearning) { Console.WriteLine("Symbol recognition test will train the recognizer as it runs"); } else { Console.WriteLine("Symbol recognition test will NOT train the recognizer as it runs"); } }
private static IRecognitionStep getStep(string name) { Console.WriteLine("Loading stage: " + name); switch (name) { case "cls": return(RecognitionPipeline.createDefaultClassifier()); case "grp": return(RecognitionPipeline.createDefaultGrouper()); case "rec": return(RecognitionPipeline.createDefaultRecognizer()); case "con": return(RecognitionPipeline.createDefaultConnector()); case "ref": return(RecognitionPipeline.createDefaultRefiner(RecognitionPipeline.createDefaultConnector(), RecognitionPipeline.createDefaultRecognizer())); case "ref_ctx": return(new ContextRefiner(ContextDomain.CircuitDomain.GetInstance(), RecognitionPipeline.createDefaultRecognizer())); case "ref_cctx": return(new CarefulContextRefiner(ContextDomain.CircuitDomain.GetInstance(), RecognitionPipeline.createDefaultRecognizer())); case "ref_search": return(new SearchRefiner(ContextDomain.CircuitDomain.GetInstance())); } return(null); }
/// <summary> /// Arguments /// 0: the directory to find files /// 1: directory to find real-world data (recursive) /// </summary> /// <param name="args"></param> static void Main(string[] args) { if (args.Length < 2) { return; } // Get the list of files Console.WriteLine("Finding sketch files..."); List <string> allSketches = new List <string>(System.IO.Directory.GetFiles(args[0], "*.xml")); Console.WriteLine(" found " + allSketches.Count + " sketches"); // Load all the shapes in all the sketches Console.WriteLine("Loading full data set..."); List <Shape> shapeData = GetShapeData(allSketches); Console.WriteLine(" found " + shapeData.Count + " gates"); // Print classes found HashSet <ShapeType> types = new HashSet <ShapeType>(); foreach (Shape shape in shapeData) { types.Add(shape.Type); } Console.WriteLine("Found " + types.Count + " types:"); foreach (ShapeType type in types) { Console.WriteLine(" " + type); } // Save all the shapes to images in the "sketches" folder string outputPath = @"shapes\"; Console.WriteLine("Saving gates to '" + outputPath + "'..."); if (!System.IO.Directory.Exists(outputPath)) { System.IO.Directory.CreateDirectory(outputPath); } foreach (Shape shape in shapeData) { System.Drawing.Bitmap b = shape.createBitmap(100, 100, true); shape.TemplateDrawing = b; string filename = String.Format(outputPath + shape.Type + "-{0:x}.png", shape.GetHashCode()); b.Save(filename); } Console.WriteLine(" finished saving gates"); // Train the base recognizers on all the data Console.WriteLine("Training recognizers on all data..."); #if false Console.WriteLine(" rubine"); RubineRecognizerUpdateable rubine = new RubineRecognizerUpdateable(shapeData); rubine.Save("Rubine.rru"); rubine.LiteRecognizer.Save("RubineLite.rr"); Console.WriteLine(" dollar"); DollarRecognizer dollar = new DollarRecognizer(shapeData); dollar.Save("Dollar.dr"); RubineRecognizerUpdateable rubine = new RubineRecognizerUpdateable(); rubine.Save("Rubine.rru"); rubine.LiteRecognizer.Save("RubineLite.rr"); DollarRecognizer dollar = new DollarRecognizer(); dollar.Save("Dollar.dr"); Console.WriteLine(" zernike"); ZernikeMomentRecognizerUpdateable zernike = new ZernikeMomentRecognizerUpdateable(shapeData); zernike.Save("Zernike.zru"); zernike.LiteRecognizer.Save("ZernikeLite.zr"); #endif Console.WriteLine(" adaptive image"); AdaptiveImageRecognizer adaptiveimage = new AdaptiveImageRecognizer(shapeData); adaptiveimage.Save("AdaptiveImage.air"); Console.WriteLine(" image"); ImageRecognizer image = new ImageRecognizer(shapeData); image.Save("Image.ir"); Console.WriteLine(" finished training recognizers"); #if false RubineRecognizer fullRubine = rubine.LiteRecognizer; DollarRecognizer fullDollar = dollar; ZernikeMomentRecognizer fullZernike = zernike.LiteRecognizer; ImageRecognizer fullImage = image; // Split the data up per-user Console.WriteLine("Loading per-user data..."); Dictionary <string, List <Shape>[]> user2data = GetSketchesPerUser(allSketches); Console.WriteLine(" found " + user2data.Count + " users"); // Foreach user: train each of the recognizers and accumulate training data // for the combo recognizer List <KeyValuePair <ShapeType, Dictionary <string, object> > > data = new List <KeyValuePair <ShapeType, Dictionary <string, object> > >(); foreach (KeyValuePair <string, List <Shape>[]> pair in user2data) { string user = pair.Key; //////////////////////////////////////// //////////// Train ///////////////// //////////////////////////////////////// Console.WriteLine("User: "******" rubine"); rubine = new RubineRecognizerUpdateable(trainingSet); rubine.Save("Rubine" + user + ".rru"); rubine.LiteRecognizer.Save("RubineLite" + user + ".rr"); Console.WriteLine(" dollar"); dollar = new DollarRecognizer(trainingSet); dollar.Save("Dollar" + user + ".dr"); #else rubine = new RubineRecognizerUpdateable(); rubine.Save("Rubine" + user + ".rru"); rubine.LiteRecognizer.Save("RubineLite" + user + ".rr"); dollar = new DollarRecognizer(); dollar.Save("Dollar" + user + ".dr"); #endif Console.WriteLine(" zernike"); zernike = new ZernikeMomentRecognizerUpdateable(trainingSet); zernike.Save("Zernike" + user + ".zru"); zernike.LiteRecognizer.Save("ZernikeLite" + user + ".zr"); Console.WriteLine(" image"); image = new ImageRecognizer(trainingSet); image.Save("Image" + user + ".ir"); fullImage = image; //////////////////////////////////////// //////////// Evaluate ////////////////// //////////////////////////////////////// List <Shape> testingSet = pair.Value[1]; // Create the training data for the combo recognizer List <KeyValuePair <ShapeType, Dictionary <string, object> > > comboTrainingData = TrainingDataCombo(testingSet, rubine, dollar, zernike, image); foreach (KeyValuePair <ShapeType, Dictionary <string, object> > pair2 in comboTrainingData) { data.Add(pair2); } } if (data.Count == 0) { throw new Exception("no data!"); } List <string> features = new List <string>(); foreach (KeyValuePair <ShapeType, Dictionary <string, object> > instance in data) { foreach (string feature in instance.Value.Keys) { if (!features.Contains(feature)) { features.Add(feature); } } } Console.WriteLine("Found " + data.Count + " data points and " + features.Count + " features."); ComboRecognizer combo = new ComboRecognizer(fullRubine, fullDollar, fullZernike, fullImage); combo.TrainCombo(features, data); combo.Save("Combo.cru"); Console.WriteLine("Naive bayes updatable has " + combo.ComboClassifier.Examples.Count + " examples."); Console.WriteLine("Naive bayes updatable has " + combo.ComboClassifier.Classifier.Classes.Count + " classes:"); foreach (ShapeType cls in combo.ComboClassifier.Classifier.Classes) { Console.WriteLine(" " + cls); } #endif Console.WriteLine("Training neural image recognizer on real-world data..."); List <Shape> goodGates; // list of correctly-identified gates List <Shape> badGates; // list of shapes grouped as gates that aren't Dictionary <Shape, string> shapeSources; // map of shapes to source filename string cacheFile = outputPath + "goodAndBadGates.data"; if (!System.IO.File.Exists(cacheFile)) { goodGates = new List <Shape>(); badGates = new List <Shape>(); shapeSources = new Dictionary <Shape, string>(); Grouper grouper = RecognitionPipeline.createDefaultGrouper(); Classifier classifier = RecognitionPipeline.createDefaultClassifier(); RecognitionPipeline pipeline = new RecognitionPipeline(classifier, grouper); var files = Files.FUtil.AllFiles(args[1], Files.Filetype.XML, true); Console.WriteLine(" Found " + files.Count() + " real-world sketches"); int i = 1; foreach (string file in files) { Console.WriteLine(" Sketch " + i + " / " + files.Count()); i++; Sketch.Sketch sketch = new ReadXML(file).Sketch; Sketch.Sketch original = sketch.Clone(); sketch.RemoveLabels(); sketch.resetShapes(); pipeline.process(sketch); foreach (Sketch.Shape shape in sketch.Shapes) { if (shape.Classification != LogicDomain.GATE_CLASS) { continue; } Shape originalGate = original.ShapesL.Find(delegate(Shape s) { return(s.GeometricEquals(shape)); }); if (originalGate != null && originalGate.Classification == LogicDomain.GATE_CLASS) { goodGates.Add(shape); } else { // We can't just say "this is a bad gate." If it wasn't found, // the shape might be an XOR gate missing the back, or a NAND // gate missing a bubble. We will apply the following heuristic: // if all the strokes in the shape are part of the same // shape in the original sketch and that shape in the // original sketch is a gate, this is not a bad gate. // a shape consists of one or more substrokes from shapes in the // original, correct sketch HashSet <Shape> originalShapes = new HashSet <Shape>(); foreach (Substroke substroke in shape.Substrokes) { Substroke originalSubstroke = original.SubstrokesL.Find(delegate(Substroke s) { return(s.GeometricEquals(substroke)); }); if (originalSubstroke == null) { throw new Exception("A substroke is missing in the original sketch???"); } if (originalSubstroke.ParentShape != null) { originalShapes.Add(originalSubstroke.ParentShape); } } List <Shape> originalShapesL = originalShapes.ToList(); if (originalShapesL.Count != 1 || originalShapesL[0].Classification != LogicDomain.GATE_CLASS) { badGates.Add(shape); } } shapeSources.Add(shape, file); } } Console.WriteLine("Saving found gates to " + cacheFile); var stream = System.IO.File.Open(cacheFile, System.IO.FileMode.Create); var bformatter = new System.Runtime.Serialization.Formatters.Binary.BinaryFormatter(); bformatter.Serialize(stream, Tuple.Create(goodGates, badGates, shapeSources)); stream.Close(); } else { Console.WriteLine("Loading good and bad gates from " + cacheFile); var stream = System.IO.File.Open(cacheFile, System.IO.FileMode.Open); var bformatter = new System.Runtime.Serialization.Formatters.Binary.BinaryFormatter(); var data = (Tuple <List <Shape>, List <Shape>, Dictionary <Shape, string> >)bformatter.Deserialize(stream); stream.Close(); goodGates = data.Item1; badGates = data.Item2; shapeSources = data.Item3; } Console.WriteLine(" Found " + goodGates.Count + " good gates, " + badGates.Count + " bad gates"); ImageRecognizer innerNeuralRecgonizer = image; string neuralPath = @"neuralResults\"; string arffFilename = "data.arff"; if (!System.IO.Directory.Exists(neuralPath)) { System.IO.Directory.CreateDirectory(neuralPath); } Console.WriteLine(" Writing ARFF file '" + neuralPath + arffFilename + "'..."); TextWriter arffWriter = new StreamWriter(neuralPath + arffFilename); NeuralImageRecognizer.WriteARFF(arffWriter, innerNeuralRecgonizer, goodGates, badGates); arffWriter.Close(); Console.WriteLine(" Training the network..."); // Network settings -- determined empircally NeuralNetworkInfo info = new NeuralNetworkInfo(); info.Layers = new int[] { 8, 1 }; info.NumTrainingEpochs = 1000; info.LearningRate = 0.05; info.Momentum = 0.2; NeuralImageRecognizer neuralImage = new NeuralImageRecognizer(innerNeuralRecgonizer, goodGates, badGates, info); neuralImage.Save("NeuralImage.nir"); Console.WriteLine(" Testing the network (results in " + neuralPath + ")..."); neuralImage = NeuralImageRecognizer.Load("NeuralImage.nir"); TextWriter writer = new StreamWriter(neuralPath + "info.csv"); writer.WriteLine("Sketch File, Shape Bitmap, Good?, Tanimoto, Yule, Partial Hausdorff, Modified Hausdorff, Output Confidence"); int falseNegatives = 0; foreach (Shape gate in goodGates) { ImageRecognitionResult result = (ImageRecognitionResult)neuralImage.recognize(gate, null); if (result.Confidence < 0.5) { falseNegatives++; } System.Drawing.Bitmap b = gate.createBitmap(100, 100, true); string filename = String.Format("good-" + "-{0:x}.png", gate.GetHashCode()); b.Save(neuralPath + filename); writer.WriteLine(shapeSources[gate] + "," + filename + ", 1, " + result.Tanimoto + ", " + result.Yule + ", " + result.PartialHausdorff + ", " + result.ModifiedHausdorff + ", " + result.Confidence); } Console.WriteLine(" Good gates with low confidence: " + falseNegatives + "/" + (goodGates.Count)); int falsePositives = 0; foreach (Shape gate in badGates) { ImageRecognitionResult result = (ImageRecognitionResult)neuralImage.recognize(gate, null); if (result.Confidence > 0.5) { falsePositives++; } System.Drawing.Bitmap b = gate.createBitmap(100, 100, true); string filename = String.Format("bad-" + "-{0:x}.png", gate.GetHashCode()); b.Save(neuralPath + filename); writer.WriteLine(shapeSources[gate] + "," + filename + ", 0, " + result.Tanimoto + ", " + result.Yule + ", " + result.PartialHausdorff + ", " + result.ModifiedHausdorff + ", " + result.Confidence); } Console.WriteLine(" Bad gates with high confidence: " + falsePositives + "/" + (badGates.Count)); writer.Close(); Console.WriteLine("Press ENTER to continue..."); Console.ReadLine(); }