void getComponents() { GameObject functions = GameObject.Find ("Functions"); saveData = functions.GetComponent<SaveData> (); readCSV = functions.GetComponent<ReadCSV> (); gameData = GameObject.Find ("GameData").GetComponent<GameData> (); remainingGoldText = GameObject.Find ("RemainingGold").GetComponent<Text> (); ListAllItems_Values = GameObject.Find ("ListAllItems_Values"); ListAllItems_SampleValue = GameObject.Find ("ListAllItems_SampleValue"); ListAllItems_Buttons = GameObject.Find ("ListAllItems_Buttons"); ListAllItems_SampleButton = GameObject.Find ("ListAllItems_SampleButton"); ListStoreInv_Values = GameObject.Find ("ListStoreInv_Values"); ListStoreInv_SampleValue = GameObject.Find ("ListStoreInv_SampleValue"); ListStoreInv_Buttons = GameObject.Find ("ListStoreInv_Buttons"); ListStoreInv_SampleButton = GameObject.Find ("ListStoreInv_SampleButton"); ListAllItems_ScrollContent = GameObject.Find ("ListAllItems_ScrollContent"); ListStoreInv_ScrollContent = GameObject.Find ("ListStoreInv_ScrollContent"); ListAllItems_ScrollView = GameObject.Find ("ListAllItems_ScrollView"); ListStoreInv_ScrollView = GameObject.Find ("ListStoreInv_ScrollView"); ListAllItems_ScrollBar = GameObject.Find ("ListAllItems_ScrollBar"); ListStoreInv_ScrollBar = GameObject.Find ("ListStoreInv_ScrollBar"); StartGame_Button = GameObject.Find ("StartGame_Button"); StartGame_Button.GetComponent<Button>().onClick.AddListener(delegate { startGame(); }); }
public void TestClassification() { FileInfo rawFile = TEMP_DIR.CreateFile("simple.csv"); FileInfo egaFile = TEMP_DIR.CreateFile("simple.ega"); FileInfo outputFile = TEMP_DIR.CreateFile("simple_output.csv"); FileUtil.CopyResource("Encog.Resources.simple.csv", rawFile); FileUtil.CopyResource("Encog.Resources.simple-c.ega", egaFile); EncogAnalyst analyst = new EncogAnalyst(); analyst.AddAnalystListener(new ConsoleAnalystListener()); analyst.Load(egaFile); analyst.ExecuteTask("task-full"); ReadCSV csv = new ReadCSV(outputFile.ToString(), true, CSVFormat.English); while (csv.Next()) { Assert.AreEqual(csv.Get(3), csv.Get(4)); } Assert.AreEqual(4, analyst.Script.Fields.Length); Assert.AreEqual(3, analyst.Script.Fields[3].ClassMembers.Count); csv.Close(); }
public void TestRegression() { FileInfo rawFile = TEMP_DIR.CreateFile("simple.csv"); FileInfo egaFile = TEMP_DIR.CreateFile("simple.ega"); FileInfo outputFile = TEMP_DIR.CreateFile("simple_output.csv"); FileUtil.CopyResource("Encog.Resources.simple.csv", rawFile); FileUtil.CopyResource("Encog.Resources.simple-r.ega", egaFile); EncogAnalyst analyst = new EncogAnalyst(); analyst.Load(egaFile); analyst.ExecuteTask("task-full"); ReadCSV csv = new ReadCSV(outputFile.ToString(), true, CSVFormat.English); while (csv.Next()) { double diff = Math.Abs(csv.GetDouble(2) - csv.GetDouble(4)); Assert.IsTrue(diff < 1.5); } Assert.AreEqual(4, analyst.Script.Fields.Length); Assert.AreEqual(3, analyst.Script.Fields[3].ClassMembers.Count); csv.Close(); }
public ICollection<LoadedMarketData> Load( TickerSymbol ticker, IList<MarketDataType> dataNeeded, DateTime from, DateTime to) { // TODO: nyyyyyyyaaagh! ICollection<LoadedMarketData> result = new List<LoadedMarketData>(); Uri url = BuildURL(ticker, from, to); WebRequest http = HttpWebRequest.Create(url); HttpWebResponse response = http.GetResponse() as HttpWebResponse; using (Stream istream = response.GetResponseStream()) { ReadCSV csv = new ReadCSV( istream, true, CSVFormat.DECIMAL_POINT ); while (csv.Next()) { // todo: edit headers to match DateTime date = csv.GetDate("DATE"); date = date.Add( new TimeSpan( csv.GetDate("TIME").Hour, csv.GetDate("TIME").Minute, csv.GetDate("TIME").Second ) ); double open = csv.GetDouble("OPEN"); double high = csv.GetDouble("MIN"); double low = csv.GetDouble("MAX"); double close = csv.GetDouble("CLOSE"); double volume = csv.GetDouble("VOLUME"); LoadedMarketData data = new LoadedMarketData(date, ticker); data.SetData(MarketDataType.OPEN, open); data.SetData(MarketDataType.HIGH, high); data.SetData(MarketDataType.LOW, low); data.SetData(MarketDataType.CLOSE, close); data.SetData(MarketDataType.VOLUME, volume); result.Add(data); } csv.Close(); istream.Close(); } return result; }
/// <summary> /// Load the specified financial data. /// </summary> /// <param name="ticker">The ticker symbol to load.</param> /// <param name="dataNeeded">The financial data needed.</param> /// <param name="from">The beginning date to load data from.</param> /// <param name="to">The ending date to load data to.</param> /// <returns>A collection of LoadedMarketData objects that represent the data /// loaded.</returns> public ICollection<LoadedMarketData> Load(TickerSymbol ticker, IList<MarketDataType> dataNeeded, DateTime from, DateTime to) { ICollection<LoadedMarketData> result = new List<LoadedMarketData>(); Uri url = BuildURL(ticker, from, to); WebRequest http = WebRequest.Create(url); var response = (HttpWebResponse) http.GetResponse(); using (Stream istream = response.GetResponseStream()) { var csv = new ReadCSV(istream, true, CSVFormat.DecimalPoint); while (csv.Next()) { DateTime date = csv.GetDate("date"); double adjClose = csv.GetDouble("adj close"); double open = csv.GetDouble("open"); double close = csv.GetDouble("close"); double high = csv.GetDouble("high"); double low = csv.GetDouble("low"); double volume = csv.GetDouble("volume"); var data = new LoadedMarketData(date, ticker); data.SetData(MarketDataType.AdjustedClose, adjClose); data.SetData(MarketDataType.Open, open); data.SetData(MarketDataType.Close, close); data.SetData(MarketDataType.High, high); data.SetData(MarketDataType.Low, low); data.SetData(MarketDataType.Open, open); data.SetData(MarketDataType.Volume, volume); result.Add(data); } csv.Close(); istream.Close(); } return result; }
private void button1_Click(object sender, EventArgs e) { openFileDialog1 = new OpenFileDialog(); openFileDialog1.InitialDirectory = ("c:\\"); openFileDialog1.Filter = ("txt files (*.csv)|*.csv|All files (*.*)|*.*"); openFileDialog1.FilterIndex = (2); openFileDialog1.RestoreDirectory = (true); this.Visible = false; DialogResult result = this.openFileDialog1.ShowDialog(); // Show the dialog. if (result == DialogResult.OK) // Test result. { string file = openFileDialog1.FileName; try { Chosenfile = file; format = FormatDictionary[CSVFormatsCombo.Text]; foreach (string item in MarketDataTypesListBox.SelectedItems) { TypesLoaded.Add((MarketDataType)Enum.Parse(typeof(MarketDataType), item)); } ReadCSV csv = new ReadCSV(Chosenfile, true, format); var ColQuery = from Names in csv.ColumnNames select new { Names }; //ComboBox comboxTypes = new ComboBox(); // comboxTypes.Items.Add("DateTime"); // comboxTypes.Items.Add("Double"); // comboxTypes.Items.Add("Skip"); // comboxTypes.SelectedIndex = 0; // DataGridViewRow dr = new DataGridViewRow(); // DataGridViewComboBoxCell CellGrids = new DataGridViewComboBoxCell(); // foreach (string item in comboxTypes.Items) // { // CellGrids.Items.Add(item); // } // dr.Cells.Add(CellGrids); // //newColumnsSetup.dataGridView1.Rows.Add(dr); // DataGridViewColumn cols = new DataGridViewColumn(CellGrids); // cols.Name = "Combo"; // newColumnsSetup.dataGridView1.Columns.Add(cols); //DataGridViewColumn aCol = new DataGridViewColumn(); //foreach (DataGridViewRow item in newColumnsSetup.dataGridView1.Rows) //{ // DataGridViewComboBoxCell cell = (DataGridViewComboBoxCell)(item.Cells[0]); //} } catch (Exception ex) { toolStripStatusLabel1.Text = "Error Loading the CSV:" + ex.Message; } } }
void getComponents() { GameObject functions = GameObject.Find ("Functions"); readCSV = functions.GetComponent<ReadCSV> (); }
public void LoadAllData(string ticker, string output, CSVFormat outputFormat, DateTime from, DateTime to) { try { HttpWebResponse response; ReadCSV dcsv; TextWriter writer; DateTime time; double num; double num2; double num3; double num4; double num5; long num6; StringBuilder builder; Uri requestUri = x38c212309d8d5dd3(ticker, from, to); goto Label_029A; Label_0010: builder.Append(outputFormat.Format(num, this.Precision)); writer.WriteLine(builder.ToString()); Label_0034: if (dcsv.Next()) { goto Label_01E2; } writer.Close(); return; Label_0049: builder.Append(outputFormat.Separator); builder.Append(outputFormat.Format(num3, this.Precision)); builder.Append(outputFormat.Separator); builder.Append(num6); builder.Append(outputFormat.Separator); if ((((uint) num4) + ((uint) num2)) >= 0) { goto Label_0010; } return; Label_00B3: builder.Append(outputFormat.Format(num2, this.Precision)); builder.Append(outputFormat.Separator); builder.Append(outputFormat.Format(num4, this.Precision)); if ((((uint) num6) | 4) == 0) { goto Label_0034; } builder.Append(outputFormat.Separator); Label_0116: builder.Append(outputFormat.Format(num5, this.Precision)); goto Label_0192; Label_012E: builder.Append(NumericDateUtil.DateTime2Long(time)); builder.Append(outputFormat.Separator); builder.Append(NumericDateUtil.x93295384d7a86d9d(time)); if ((((uint) num6) | 3) == 0) { goto Label_020C; } if (-2147483648 == 0) { goto Label_01FE; } builder.Append(outputFormat.Separator); goto Label_00B3; Label_0192: if (0 == 0) { goto Label_0049; } return; Label_019D: builder = new StringBuilder(); if (((uint) num4) >= 0) { goto Label_012E; } goto Label_027A; Label_01BE: num5 = dcsv.GetDouble("low"); num6 = (long) dcsv.GetDouble("volume"); goto Label_0243; Label_01E2: time = dcsv.GetDate("date"); num = dcsv.GetDouble("adj close"); Label_01FE: num2 = dcsv.GetDouble("open"); Label_020C: num3 = dcsv.GetDouble("close"); num4 = dcsv.GetDouble("high"); if ((((uint) num3) - ((uint) num4)) <= uint.MaxValue) { goto Label_01BE; } Label_0243: if ((((uint) num6) & 0) == 0) { goto Label_019D; } Label_0257: writer.WriteLine("date,time,open price,high price,low price,close price,volume,adjusted price"); if (((uint) num) >= 0) { goto Label_0034; } goto Label_019D; Label_027A: if ((((uint) num5) & 0) != 0) { goto Label_0116; } goto Label_0257; Label_029A: response = (HttpWebResponse) WebRequest.Create(requestUri).GetResponse(); Stream responseStream = response.GetResponseStream(); if (((uint) num5) < 0) { goto Label_00B3; } dcsv = new ReadCSV(responseStream, true, CSVFormat.English); writer = new StreamWriter(output); goto Label_027A; } catch (WebException exception) { throw new QuantError(exception); } }
/// <inheritDoc/> public void Close() { if (this.readCSV != null) { this.readCSV.Close(); this.readCSV = null; } if (this.output != null) { this.output.Close(); this.output = null; } }
/// <summary> /// Program entry point. /// </summary> /// <param name="app">Holds arguments and other info.</param> public void Execute(IExampleInterface app) { // Download the data that we will attempt to model. string irisFile = DownloadData(app.Args); // Define the format of the data file. // This area will change, depending on the columns and // format of the file that you are trying to model. IVersatileDataSource source = new CSVDataSource(irisFile, false, CSVFormat.DecimalPoint); var data = new VersatileMLDataSet(source); data.DefineSourceColumn("sepal-length", 0, ColumnType.Continuous); data.DefineSourceColumn("sepal-width", 1, ColumnType.Continuous); data.DefineSourceColumn("petal-length", 2, ColumnType.Continuous); data.DefineSourceColumn("petal-width", 3, ColumnType.Continuous); // Define the column that we are trying to predict. ColumnDefinition outputColumn = data.DefineSourceColumn("species", 4, ColumnType.Nominal); // Analyze the data, determine the min/max/mean/sd of every column. data.Analyze(); // Map the prediction column to the output of the model, and all // other columns to the input. data.DefineSingleOutputOthersInput(outputColumn); // Create feedforward neural network as the model type. MLMethodFactory.TYPE_FEEDFORWARD. // You could also other model types, such as: // MLMethodFactory.SVM: Support Vector Machine (SVM) // MLMethodFactory.TYPE_RBFNETWORK: RBF Neural Network // MLMethodFactor.TYPE_NEAT: NEAT Neural Network // MLMethodFactor.TYPE_PNN: Probabilistic Neural Network var model = new EncogModel(data); model.SelectMethod(data, MLMethodFactory.TypeFeedforward); // Send any output to the console. model.Report = new ConsoleStatusReportable(); // Now normalize the data. Encog will automatically determine the correct normalization // type based on the model you chose in the last step. data.Normalize(); // Hold back some data for a final validation. // Shuffle the data into a random ordering. // Use a seed of 1001 so that we always use the same holdback and will get more consistent results. model.HoldBackValidation(0.3, true, 1001); // Choose whatever is the default training type for this model. model.SelectTrainingType(data); // Use a 5-fold cross-validated train. Return the best method found. var bestMethod = (IMLRegression)model.Crossvalidate(5, true); // Display the training and validation errors. Console.WriteLine(@"Training error: " + model.CalculateError(bestMethod, model.TrainingDataset)); Console.WriteLine(@"Validation error: " + model.CalculateError(bestMethod, model.ValidationDataset)); // Display our normalization parameters. NormalizationHelper helper = data.NormHelper; Console.WriteLine(helper.ToString()); // Display the final model. Console.WriteLine(@"Final model: " + bestMethod); // Loop over the entire, original, dataset and feed it through the model. // This also shows how you would process new data, that was not part of your // training set. You do not need to retrain, simply use the NormalizationHelper // class. After you train, you can save the NormalizationHelper to later // normalize and denormalize your data. source.Close(); var csv = new ReadCSV(irisFile, false, CSVFormat.DecimalPoint); var line = new String[4]; IMLData input = helper.AllocateInputVector(); while (csv.Next()) { var result = new StringBuilder(); line[0] = csv.Get(0); line[1] = csv.Get(1); line[2] = csv.Get(2); line[3] = csv.Get(3); String correct = csv.Get(4); helper.NormalizeInputVector(line, ((BasicMLData)input).Data, false); IMLData output = bestMethod.Compute(input); String irisChosen = helper.DenormalizeOutputVectorToString(output)[0]; result.Append(line); result.Append(" -> predicted: "); result.Append(irisChosen); result.Append("(correct: "); result.Append(correct); result.Append(")"); Console.WriteLine(result.ToString()); } csv.Close(); // Delete data file ande shut down. File.Delete(irisFile); EncogFramework.Instance.Shutdown(); }
/// <summary> /// Load financial data. /// </summary> /// <param name="ticker">The ticker symbol.</param> /// <param name="output">The output file.</param> /// <param name="outputFormat">The output format.</param> /// <param name="from">Starting date.</param> /// <param name="to">Ending date.</param> public void LoadAllData(String ticker, String output, CSVFormat outputFormat, DateTime from, DateTime to) { try { Uri urlData = BuildURL(ticker, from, to); WebRequest httpData = WebRequest.Create(urlData); var responseData = (HttpWebResponse) httpData.GetResponse(); if (responseData != null) { Stream istreamData = responseData.GetResponseStream(); var csvData = new ReadCSV(istreamData, true, CSVFormat.English); TextWriter tw = new StreamWriter(output); tw.WriteLine("date,time,open price,high price,low price,close price,volume,adjusted price"); while (csvData.Next()) { DateTime date = csvData.GetDate("date"); double adjustedClose = csvData.GetDouble("adj close"); double open = csvData.GetDouble("open"); double close = csvData.GetDouble("close"); double high = csvData.GetDouble("high"); double low = csvData.GetDouble("low"); var volume = (long) csvData.GetDouble("volume"); var line = new StringBuilder(); line.Append(NumericDateUtil.DateTime2Long(date)); line.Append(outputFormat.Separator); line.Append(NumericDateUtil.Time2Int(date)); line.Append(outputFormat.Separator); line.Append(outputFormat.Format(open, Precision)); line.Append(outputFormat.Separator); line.Append(outputFormat.Format(high, Precision)); line.Append(outputFormat.Separator); line.Append(outputFormat.Format(low, Precision)); line.Append(outputFormat.Separator); line.Append(outputFormat.Format(close, Precision)); line.Append(outputFormat.Separator); line.Append(volume); line.Append(outputFormat.Separator); line.Append(outputFormat.Format(adjustedClose, Precision)); tw.WriteLine(line.ToString()); } tw.Close(); } } catch (WebException ex) { throw new QuantError(ex); } }
void getComponents() { GameObject functions = GameObject.Find ("Functions"); saveData = functions.GetComponent<SaveData> (); readCSV = functions.GetComponent<ReadCSV> (); gameData = GameObject.Find ("GameData").GetComponent<GameData> (); remainingGoldText = GameObject.Find ("RemainingGold").GetComponent<Text> (); NPCGoldText = GameObject.Find ("NPCGold").GetComponent<Text> (); markupSlider = GameObject.Find ("MarkupSlider").GetComponent<Slider> (); markupValue = GameObject.Find ("MarkupValue").GetComponent<Text> (); markupSlider.value = 120; previousMarkupValue = 120; previousQuestOutcome = GameObject.Find ("PreviousQuestOutcome").transform.GetComponentInChildren<Text> (); ListStoreInv_Values = GameObject.Find ("ListStoreInv_Values"); ListStoreInv_SampleValue = GameObject.Find ("ListStoreInv_SampleValue"); ListStoreInv_Buttons = GameObject.Find ("ListStoreInv_Buttons"); ListStoreInv_SampleButton = GameObject.Find ("ListStoreInv_SampleButton"); ListStoreInv_ScrollContent = GameObject.Find ("ListStoreInv_ScrollContent"); ListStoreInv_ScrollView = GameObject.Find ("ListStoreInv_ScrollView"); ListStoreInv_ScrollBar = GameObject.Find ("ListStoreInv_ScrollBar"); NPCDialogue_Text = GameObject.Find ("NPCDialogue_Text"); Dialogue_ResponsePanel = GameObject.Find ("Dialogue_ResponsePanel"); PlayerResponse_SampleButton = GameObject.Find ("PlayerResponse_SampleButton"); Waypoint_Door = GameObject.Find ("Waypoint_Door"); Waypoint_Counter = GameObject.Find ("Waypoint_Counter"); CustomerSprite = GameObject.Find ("Customer"); }
static void Main(string[] args) { Stopwatch sw = new Stopwatch(); sw.Start(); int reading_method = Configuration.READING_MULTIITEM_METHOD; List <Item> items; if (reading_method == 0) { items = ReadCSV.readFromCSV(); } else { items = ReadCSV.readFromCSVNoMultipleItems(); } List <Item> comparison; List <PotentialPoint> potentialpointsSx = new List <PotentialPoint>(); List <PotentialPoint> potentialpointsDx = new List <PotentialPoint>(); WriteCSV.WriteFullItemListWithID(items); /*TO CREATE NEW INSTANCES*/ // InstanceCreator.writeInstance(); double upper_bound; upper_bound = Functions.objFunction(items); //WriteCSV.writeList(items); // furgonato Container c = new Container(Configuration.CONTAINER_WIDTH, Configuration.CONTAINER_HEIGHT, Configuration.CONTAINER_DEPTH, Configuration.CONTAINER_MAX_WEIGHT, Configuration.CONTAINER_UNLOADABLE_FROM_SIDE); List <Item> items1; Solution[] solution = Solver.multiRunSolution(items, c, potentialpointsSx, potentialpointsDx); Solution sol = solution[0]; items1 = sol.getItemsPacked(); WriteCSV.WriteItemPositionForVisualization(items1); WriteCSV.WriteOutpoutDescription(items1); double myResult; myResult = Functions.objFunction(items1); double x, y, z; x = Functions.dev_x(items1, c); y = Functions.dev_y(items1, c); // z = Util.Functions.dev_z(items1, c); c.loadedItemsInZone(items1); double weightMax; weightMax = Functions.totalWeightOfItems(items); List <Item> unpackedItems = Functions.getUnpackedItems(items, items1); int priority1leftUnpacked = Functions.itemsPriorityOneUnpacked(unpackedItems); int priority0leftUnpacked = Functions.itemsPriorityZeroUnpacked(unpackedItems); bool feasible = sol.zoneWeightFeasibility(c); double companyBound = ReadCSV.getCompanyBound(); double companyTotVol = ReadCSV.getCompanyTotVol(); double companyTotWeight = ReadCSV.getCompanyTotWeight(); int companyItemsPacked = ReadCSV.getCompanyItemsPacked(); sw.Stop(); /* System.err.println("Company bound: " + companyBound); * System.err.println("My_bound: " + myResult); * System.err.println("---------------------------------");*/ Console.WriteLine("Performance : " + Functions.round((myResult / companyBound * (100)), 2) + " %"); //Console.WriteLine("Read: " + StopwatchTimer.GetElapsedMillisecondsAndReset("read")); //Console.WriteLine("Write: " + StopwatchTimer.GetElapsedMillisecondsAndReset("write")); ////Console.WriteLine("Sort: " + StopwatchTimer.GetElapsedMillisecondsAndReset("sort")); //Console.WriteLine("Add: " + StopwatchTimer.GetElapsedMillisecondsAndReset("add")); ////Console.WriteLine("Pack: " + StopwatchTimer.GetElapsedMillisecondsAndReset("pack")); ////Console.WriteLine("Splice: " + StopwatchTimer.GetElapsedMillisecondsAndReset("splice")); ////Console.WriteLine("Overlap: " + StopwatchTimer.GetElapsedMillisecondsAndReset("overlap")); ////Console.WriteLine("Corner: " + StopwatchTimer.GetElapsedMillisecondsAndReset("corner")); ////Console.WriteLine("Dimension: " + StopwatchTimer.GetElapsedMillisecondsAndReset("dimension")); ////Console.WriteLine("Corners Checked: " + StopwatchTimer.CornerChecks); //Console.WriteLine("Corners Checked: " + Container.OverlapChecks); //Console.WriteLine("Elapsed: " + sw.ElapsedMilliseconds); }
/// <summary> /// Load the specified financial data. /// </summary> /// <param name="ticker">The ticker symbol to load.</param> /// <param name="dataNeeded">The financial data needed.</param> /// <param name="from">The beginning date to load data from.</param> /// <param name="to">The ending date to load data to.</param> /// <returns>A collection of LoadedMarketData objects that represent the data /// loaded.</returns> public ICollection<LoadedMarketData> Load(TickerSymbol ticker, IList<MarketDataType> dataNeeded, DateTime from, DateTime to) { ICollection<LoadedMarketData> result = new List<LoadedMarketData>(); Uri url = buildURL(ticker, from, to); WebRequest http = HttpWebRequest.Create(url); HttpWebResponse response = (HttpWebResponse)http.GetResponse(); using (Stream istream = response.GetResponseStream()) { ReadCSV csv = new ReadCSV(istream, true, CSVFormat.DECIMAL_POINT); while (csv.Next()) { DateTime date = csv.GetDate("date"); double adjClose = csv.GetDouble("adj close"); double open = csv.GetDouble("open"); double close = csv.GetDouble("close"); double high = csv.GetDouble("high"); double low = csv.GetDouble("low"); double volume = csv.GetDouble("volume"); LoadedMarketData data = new LoadedMarketData(date, ticker); data.SetData(MarketDataType.ADJUSTED_CLOSE, adjClose); data.SetData(MarketDataType.OPEN, open); data.SetData(MarketDataType.CLOSE, close); data.SetData(MarketDataType.HIGH, high); data.SetData(MarketDataType.LOW, low); data.SetData(MarketDataType.OPEN, open); data.SetData(MarketDataType.VOLUME, volume); result.Add(data); } csv.Close(); istream.Close(); } return result; }
public static void ConvertCSV2Binary(FileInfo csvFile, CSVFormat format, FileInfo binFile, int[] input, int[] ideal, bool headers) { ReadCSV dcsv; BufferedMLDataSet set; BasicMLData data; BasicMLData data2; int num; int num2; binFile.Delete(); goto Label_00FB; Label_0021: if (dcsv.Next() || ((((uint) num) - ((uint) num2)) > uint.MaxValue)) { data = new BasicMLData(input.Length); if ((((uint) headers) | uint.MaxValue) != 0) { data2 = new BasicMLData(ideal.Length); if (4 != 0) { if (((uint) num) <= uint.MaxValue) { goto Label_0073; } goto Label_00FB; } } goto Label_00C0; } set.EndLoad(); if (0 == 0) { return; } Label_0073: num = 0; while (num < input.Length) { data[num] = dcsv.GetDouble(input[num]); num++; } for (num2 = 0; num2 < ideal.Length; num2++) { data2[num2] = dcsv.GetDouble(ideal[num2]); } set.Add(data, data2); goto Label_0021; Label_00C0: set = new BufferedMLDataSet(binFile.ToString()); set.BeginLoad(input.Length, ideal.Length); goto Label_0021; Label_00FB: dcsv = new ReadCSV(csvFile.ToString(), headers, format); goto Label_00C0; }
public void PrepareRead() { if (this._x43f451310e815b76 == 0) { throw new BufferedDataError("To import CSV, you must use the CSVDataCODEC constructor that specifies input and ideal sizes."); } this._x880b5c00ed0b619c = new ReadCSV(this._xb44380e048627945, this._x94e6ca5ac178dbd0, this._x5786461d089b10a0); }
public static IMLDataSet LoadCSVTOMemory(CSVFormat format, string filename, bool headers, int inputSize, int idealSize) { ReadCSV dcsv; IMLData data; int num; IMLData data2; int num4; IMLDataSet set = new BasicMLDataSet(); goto Label_00FF; Label_000B: if (idealSize > 0) { data = new BasicMLData(idealSize); num4 = 0; while (num4 < idealSize) { double num5 = dcsv.GetDouble(num++); data[num4] = num5; num4++; } } IMLDataPair inputData = new BasicMLDataPair(data2, data); set.Add(inputData); Label_0022: if (!dcsv.Next()) { return set; } Label_00C4: data = null; num = 0; if (((uint) num4) < 0) { goto Label_0108; } data2 = new BasicMLData(inputSize); int num2 = 0; Label_006A: if (num2 < inputSize) { double num3 = dcsv.GetDouble(num++); if (-2147483648 != 0) { data2[num2] = num3; if ((((uint) idealSize) + ((uint) num)) >= 0) { num2++; } if ((((uint) num) - ((uint) idealSize)) >= 0) { goto Label_006A; } goto Label_0125; } } else { if (0 == 0) { goto Label_000B; } if (0 == 0) { goto Label_0125; } } goto Label_00C4; Label_00FF: dcsv = new ReadCSV(filename, headers, format); Label_0108: if ((((uint) num) + ((uint) num2)) < 0) { goto Label_00FF; } goto Label_0022; Label_0125: if (((uint) num4) >= 0) { goto Label_000B; } return set; }
/// <summary> /// Process the file. /// </summary> /// <param name="outputFile">The output file.</param> /// <param name="method">THe method to use.</param> public void Process(FileInfo outputFile, IMLMethod method) { var csv = new ReadCSV(InputFilename.ToString(), ExpectInputHeaders, Format); IMLData output; foreach (AnalystField field in _analyst.Script.Normalize.NormalizedFields) { field.Init(); } int outputLength = _analyst.DetermineTotalInputFieldCount(); StreamWriter tw = PrepareOutputFile(outputFile); ResetStatus(); while (csv.Next()) { UpdateStatus(false); var row = new LoadedRow(csv, _outputColumns); double[] inputArray = AnalystNormalizeCSV.ExtractFields(_analyst, _analystHeaders, csv, outputLength, true); if (_series.TotalDepth > 1) { inputArray = _series.Process(inputArray); } if (inputArray != null) { IMLData input = new BasicMLData(inputArray); // evaluation data if ((method is IMLClassification) && !(method is IMLRegression)) { // classification only? var tmp = new BasicMLData(1); tmp[0] = ((IMLClassification)method).Classify(input); output = tmp; } else { // regression output = ((IMLRegression)method).Compute(input); } // skip file data int index = _fileColumns; int outputIndex = 0; // display output foreach (AnalystField field in _analyst.Script.Normalize.NormalizedFields) { if (_analystHeaders.Find(field.Name) != -1) { if (field.Output) { if (field.Classify) { // classification ClassItem cls = field.DetermineClass( outputIndex, output); outputIndex += field.ColumnsNeeded; if (cls == null) { row.Data[index++] = "?Unknown?"; } else { row.Data[index++] = cls.Name; } } else { // regression double n = output[outputIndex++]; n = field.DeNormalize(n); row.Data[index++] = Format .Format(n, Precision); } } } } } WriteRow(tw, row); } ReportDone(false); tw.Close(); csv.Close(); }
/// <summary> /// Private constructor. /// </summary> /// private PropertyConstraints() { _data = new Dictionary <String, List <PropertyEntry> >(); try { Stream mask0 = ResourceLoader.CreateStream("Encog.Resources.analyst.csv"); var csv = new ReadCSV(mask0, false, CSVFormat.EgFormat); while (csv.Next()) { String sectionStr = csv.Get(0); String nameStr = csv.Get(1); String typeStr = csv.Get(2); // determine type PropertyType t; if ("boolean".Equals(typeStr, StringComparison.InvariantCultureIgnoreCase)) { t = PropertyType.TypeBoolean; } else if ("real".Equals(typeStr, StringComparison.InvariantCultureIgnoreCase)) { t = PropertyType.TypeDouble; } else if ("format".Equals(typeStr, StringComparison.InvariantCultureIgnoreCase)) { t = PropertyType.TypeFormat; } else if ("int".Equals(typeStr, StringComparison.InvariantCultureIgnoreCase)) { t = PropertyType.TypeInteger; } else if ("list-string".Equals(typeStr, StringComparison.InvariantCultureIgnoreCase)) { t = PropertyType.TypeListString; } else if ("string".Equals(typeStr, StringComparison.InvariantCultureIgnoreCase)) { t = PropertyType.TypeString; } else { throw new AnalystError("Unknown type constraint: " + typeStr); } var entry = new PropertyEntry(t, nameStr, sectionStr); List <PropertyEntry> list; if (_data.ContainsKey(sectionStr)) { list = _data[sectionStr]; } else { list = new List <PropertyEntry>(); _data[sectionStr] = list; } list.Add(entry); } csv.Close(); mask0.Close(); } catch (IOException e) { throw new EncogError(e); } }
private void x076efb43809972d8() { string str; FileInfo info; CSVFormat format; bool flag; ScriptProperties properties = this._x554f16462d8d4675.Script.Properties; Label_00AD: str = properties.GetPropertyString("HEADER:DATASOURCE_rawFile"); do { info = this._x554f16462d8d4675.Script.ResolveFilename(str); if (((uint) flag) < 0) { goto Label_00AD; } format = this._x554f16462d8d4675.Script.DetermineInputFormat(str); flag = this._x554f16462d8d4675.Script.ExpectInputHeaders(str); } while (0 != 0); this._x0fe0496cde3d05e3 = 0; if (0 == 0) { this._xed3494f8db69efb7 = 0; ReadCSV dcsv = new ReadCSV(info.ToString(), flag, format); while (dcsv.Next()) { this._x0fe0496cde3d05e3++; if (dcsv.HasMissing()) { this._xed3494f8db69efb7++; } } dcsv.Close(); if (((uint) flag) > uint.MaxValue) { goto Label_00AD; } } }
/// <summary> /// Prepare to read from the CSV file. /// </summary> public void PrepareRead() { if (_inputCount == 0) { throw new BufferedDataError( "To import CSV, you must use the CSVDataCODEC constructor that specifies input and ideal sizes."); } _readCSV = new ReadCSV(_file, _headers, _format); }
/// <summary> /// Analyze the file. /// </summary> private void AnalyzeFile() { ScriptProperties prop = _analyst.Script.Properties; // get filenames, headers & format String sourceID = prop.GetPropertyString( ScriptProperties.HeaderDatasourceRawFile); FileInfo sourceFile = _analyst.Script.ResolveFilename(sourceID); CSVFormat format = _analyst.Script.DetermineFormat(); bool headers = _analyst.Script.ExpectInputHeaders(sourceID); // read the file _rowCount = 0; _missingCount = 0; var csv = new ReadCSV(sourceFile.ToString(), headers, format); while (csv.Next()) { _rowCount++; if (csv.HasMissing()) { _missingCount++; } } csv.Close(); }
void Awake() { dir = GameObject.Find("BattleDirecter"); csv = dir.GetComponent <ReadCSV>(); VScript = dir.GetComponent <ValueScript>(); }
public void Close() { if (this._x880b5c00ed0b619c == null) { goto Label_0014; } if (0 == 0) { goto Label_0025; } Label_000B: this._x9c13656d94fc62d0 = null; return; Label_0014: if (this._x9c13656d94fc62d0 != null) { this._x9c13656d94fc62d0.Close(); goto Label_000B; } if (0x7fffffff != 0) { return; } Label_0025: this._x880b5c00ed0b619c.Close(); this._x880b5c00ed0b619c = null; goto Label_0014; }
/// <summary> /// Analyze the input file. /// </summary> /// /// <param name="input">The input file.</param> /// <param name="headers">True, if there are headers.</param> /// <param name="format">The format of the CSV data.</param> public virtual void Analyze(FileInfo input, bool headers, CSVFormat format) { ResetStatus(); InputFilename = input; ExpectInputHeaders = headers; InputFormat = format; _columnMapping.Clear(); _columns.Clear(); // first count the rows TextReader reader = null; try { int recordCount = 0; reader = new StreamReader(InputFilename.OpenRead()); while (reader.ReadLine() != null) { UpdateStatus(true); recordCount++; } if (headers) { recordCount--; } RecordCount = recordCount; } catch (IOException ex) { throw new QuantError(ex); } finally { ReportDone(true); if (reader != null) { try { reader.Close(); } catch (IOException e) { throw new QuantError(e); } } InputFilename = input; ExpectInputHeaders = headers; InputFormat = format; } // now analyze columns ReadCSV csv = null; try { csv = new ReadCSV(input.ToString(), headers, format); if (!csv.Next()) { throw new QuantError("File is empty"); } for (int i = 0; i < csv.ColumnCount; i++) { String name; if (headers) { name = AttemptResolveName(csv.ColumnNames[i]); } else { name = "Column-" + (i + 1); } // determine if it should be an input/output field String str = csv.Get(i); bool io = false; try { InputFormat.Parse(str); io = true; } catch (FormatException ex) { EncogLogging.Log(ex); } AddColumn(new FileData(name, i, io, io)); } } finally { if (csv != null) { csv.Close(); } Analyzed = true; } }
public void EvaluateNetwork() { BasicNetwork network = LoadNetwork(); DataNormalization norm = LoadNormalization(); var csv = new ReadCSV(_config.EvaluateFile.ToString(), false, ','); var input = new double[norm.InputFields.Count]; var eqField = (OutputEquilateral) norm.FindOutputField( typeof (OutputEquilateral), 0); int correct = 0; int total = 0; while (csv.Next()) { total++; for (int i = 0; i < input.Length; i++) { input[i] = csv.GetDouble(i); } IMLData inputData = norm.BuildForNetworkInput(input); IMLData output = network.Compute(inputData); int coverTypeActual = DetermineTreeType(eqField, output); int coverTypeIdeal = (int) csv.GetDouble(54) - 1; KeepScore(coverTypeActual, coverTypeIdeal); if (coverTypeActual == coverTypeIdeal) { correct++; } } Console.WriteLine(@"Total cases:" + total); Console.WriteLine(@"Correct cases:" + correct); double percent = correct/(double) total; Console.WriteLine(@"Correct percent:" + Format.FormatPercentWhole(percent)); for (int i = 0; i < 7; i++) { double p = (_treeCorrect[i]/(double) _treeCount[i]); Console.WriteLine(@"Tree Type #" + i + @" - Correct/total: " + _treeCorrect[i] + @"/" + _treeCount[i] + @"(" + Format.FormatPercentWhole(p) + @")"); } }
private void Start() { readcsv = new ReadCSV(); // OpenPanel(); }
/// <summary> /// Process the input file and segregate into the output files. /// </summary> /// public void Process() { Validate(); var csv = new ReadCSV(InputFilename.ToString(), ExpectInputHeaders, InputFormat); ResetStatus(); foreach (SegregateTargetPercent target in _targets) { StreamWriter tw = PrepareOutputFile(target.Filename); while ((target.NumberRemaining > 0) && csv.Next() && !ShouldStop()) { UpdateStatus(false); var row = new LoadedRow(csv); WriteRow(tw, row); target.NumberRemaining = target.NumberRemaining - 1; } tw.Close(); } ReportDone(false); csv.Close(); }
public ICollection<LoadedMarketData> Load(TickerSymbol ticker, IList<MarketDataType> dataNeeded, DateTime from, DateTime to) { ICollection<LoadedMarketData> is2 = new List<LoadedMarketData>(); HttpWebResponse response = (HttpWebResponse) WebRequest.Create(x38c212309d8d5dd3(ticker, from, to)).GetResponse(); using (Stream stream = response.GetResponseStream()) { DateTime time; double num; double num2; double num3; double num4; double num5; double num6; LoadedMarketData data; ReadCSV dcsv = new ReadCSV(stream, true, CSVFormat.DecimalPoint); goto Label_005B; Label_003F: data.SetData(MarketDataType.Open, num2); Label_0049: data.SetData(MarketDataType.Volume, num6); is2.Add(data); Label_005B: if (dcsv.Next()) { goto Label_01AF; } dcsv.Close(); stream.Close(); if ((((uint) num) - ((uint) num5)) <= uint.MaxValue) { goto Label_0125; } if ((((uint) num) & 0) == 0) { goto Label_00B0; } Label_00A4: data.SetData(MarketDataType.Low, num5); goto Label_003F; Label_00B0: data.SetData(MarketDataType.AdjustedClose, num); do { data.SetData(MarketDataType.Open, num2); if ((((uint) num) - ((uint) num6)) > uint.MaxValue) { goto Label_0049; } data.SetData(MarketDataType.Close, num3); data.SetData(MarketDataType.High, num4); } while ((((uint) num5) - ((uint) num3)) > uint.MaxValue); if (((uint) num2) >= 0) { goto Label_00A4; } goto Label_003F; Label_0125: if (((uint) num2) >= 0) { return is2; } goto Label_005B; Label_013C: num6 = dcsv.GetDouble("volume"); data = new LoadedMarketData(time, ticker); if ((((uint) num2) | 2) == 0) { goto Label_017C; } goto Label_00B0; Label_016E: num2 = dcsv.GetDouble("open"); Label_017C: num3 = dcsv.GetDouble("close"); num4 = dcsv.GetDouble("high"); num5 = dcsv.GetDouble("low"); goto Label_013C; Label_01AF: time = dcsv.GetDate("date"); num = dcsv.GetDouble("adj close"); if ((((uint) num3) + ((uint) num6)) <= uint.MaxValue) { goto Label_016E; } goto Label_00B0; } }
/// <inheritDoc/> public void Close() { if (_readCSV != null) { _readCSV.Close(); _readCSV = null; } if (_output != null) { _output.Close(); _output = null; } }
/// <summary> /// Load a row from the specified CSV file. /// </summary> /// <param name="csv">The CSV file to use.</param> public LoadedRow(ReadCSV csv) : this(csv, 0) { }