protected override void SetupOptions() { options .Add("prediction-line=", v => prediction_line = v) .Add("prediction-header=", v => prediction_header = v) .Add("chronological-split=", v => chronological_split = v) .Add("rating-type=", (RatingType v) => rating_type = v) .Add("file-format=", (RatingFileFormat v) => file_format = v) .Add("search-hp", v => search_hp = v != null) .Add("test-no-ratings", v => test_no_ratings = v != null); }
static void Main(string[] args) { Assembly assembly = Assembly.GetExecutingAssembly(); Assembly.LoadFile(Path.GetDirectoryName(assembly.Location) + Path.DirectorySeparatorChar + "MyMediaLiteExperimental.dll"); AppDomain.CurrentDomain.UnhandledException += new UnhandledExceptionEventHandler(Handlers.UnhandledExceptionHandler); Console.CancelKeyPress += new ConsoleCancelEventHandler(AbortHandler); // recommender arguments string method = "BiasedMatrixFactorization"; string recommender_options = string.Empty; // help/version bool show_help = false; bool show_version = false; // arguments for iteration search int find_iter = 0; int max_iter = 500; double epsilon = 0; double rmse_cutoff = double.MaxValue; double mae_cutoff = double.MaxValue; // data arguments string data_dir = string.Empty; string user_attributes_file = string.Empty; string item_attributes_file = string.Empty; string user_relations_file = string.Empty; string item_relations_file = string.Empty; // other arguments bool online_eval = false; bool search_hp = false; string save_model_file = string.Empty; string load_model_file = string.Empty; int random_seed = -1; string prediction_file = string.Empty; string prediction_line = "{0}\t{1}\t{2}"; int cross_validation = 0; double split_ratio = 0; var p = new OptionSet() { // string-valued options { "training-file=", v => training_file = v }, { "test-file=", v => test_file = v }, { "recommender=", v => method = v }, { "recommender-options=", v => recommender_options += " " + v }, { "data-dir=", v => data_dir = v }, { "user-attributes=", v => user_attributes_file = v }, { "item-attributes=", v => item_attributes_file = v }, { "user-relations=", v => user_relations_file = v }, { "item-relations=", v => item_relations_file = v }, { "save-model=", v => save_model_file = v }, { "load-model=", v => load_model_file = v }, { "prediction-file=", v => prediction_file = v }, { "prediction-line=", v => prediction_line = v }, // integer-valued options { "find-iter=", (int v) => find_iter = v }, { "max-iter=", (int v) => max_iter = v }, { "random-seed=", (int v) => random_seed = v }, { "cross-validation=", (int v) => cross_validation = v }, // double-valued options { "epsilon=", (double v) => epsilon = v }, { "rmse-cutoff=", (double v) => rmse_cutoff = v }, { "mae-cutoff=", (double v) => mae_cutoff = v }, { "split-ratio=", (double v) => split_ratio = v }, // enum options { "rating-type=", (RatingType v) => rating_type = v }, { "file-format=", (RatingFileFormat v) => file_format = v }, // boolean options { "compute-fit", v => compute_fit = v != null }, { "online-evaluation", v => online_eval = v != null }, { "search-hp", v => search_hp = v != null }, { "help", v => show_help = v != null }, { "version", v => show_version = v != null }, }; IList <string> extra_args = p.Parse(args); // TODO make sure interaction of --find-iter and --cross-validation works properly bool no_eval = test_file == null; if (show_version) { ShowVersion(); } if (show_help) { Usage(0); } if (extra_args.Count > 0) { Usage("Did not understand " + extra_args[0]); } if (training_file == null) { Usage("Parameter --training-file=FILE is missing."); } if (cross_validation != 0 && split_ratio != 0) { Usage("--cross-validation=K and --split-ratio=NUM are mutually exclusive."); } if (random_seed != -1) { MyMediaLite.Util.Random.InitInstance(random_seed); } recommender = Recommender.CreateRatingPredictor(method); if (recommender == null) { Usage(string.Format("Unknown method: '{0}'", method)); } Recommender.Configure(recommender, recommender_options, Usage); // ID mapping objects if (file_format == RatingFileFormat.KDDCUP_2011) { user_mapping = new IdentityMapping(); item_mapping = new IdentityMapping(); } // load all the data LoadData(data_dir, user_attributes_file, item_attributes_file, user_relations_file, item_relations_file, !online_eval); Console.Error.WriteLine(string.Format(CultureInfo.InvariantCulture, "ratings range: [{0}, {1}]", recommender.MinRating, recommender.MaxRating)); if (split_ratio > 0) { var split = new RatingsSimpleSplit(training_data, split_ratio); recommender.Ratings = split.Train[0]; training_data = split.Train[0]; test_data = split.Test[0]; } Utils.DisplayDataStats(training_data, test_data, recommender); if (find_iter != 0) { if (!(recommender is IIterativeModel)) { Usage("Only iterative recommenders support find_iter."); } var iterative_recommender = (IIterativeModel)recommender; Console.WriteLine(recommender.ToString() + " "); if (load_model_file == string.Empty) { recommender.Train(); } else { Recommender.LoadModel(iterative_recommender, load_model_file); } if (compute_fit) { Console.Write(string.Format(CultureInfo.InvariantCulture, "fit {0,0:0.#####} ", iterative_recommender.ComputeFit())); } MyMediaLite.Eval.Ratings.DisplayResults(MyMediaLite.Eval.Ratings.Evaluate(recommender, test_data)); Console.WriteLine(" iteration " + iterative_recommender.NumIter); for (int i = (int)iterative_recommender.NumIter + 1; i <= max_iter; i++) { TimeSpan time = Utils.MeasureTime(delegate() { iterative_recommender.Iterate(); }); training_time_stats.Add(time.TotalSeconds); if (i % find_iter == 0) { if (compute_fit) { double fit = 0; time = Utils.MeasureTime(delegate() { fit = iterative_recommender.ComputeFit(); }); fit_time_stats.Add(time.TotalSeconds); Console.Write(string.Format(CultureInfo.InvariantCulture, "fit {0,0:0.#####} ", fit)); } Dictionary <string, double> results = null; time = Utils.MeasureTime(delegate() { results = MyMediaLite.Eval.Ratings.Evaluate(recommender, test_data); }); eval_time_stats.Add(time.TotalSeconds); MyMediaLite.Eval.Ratings.DisplayResults(results); rmse_eval_stats.Add(results["RMSE"]); Console.WriteLine(" iteration " + i); Recommender.SaveModel(recommender, save_model_file, i); if (prediction_file != string.Empty) { Prediction.WritePredictions(recommender, test_data, user_mapping, item_mapping, prediction_line, prediction_file + "-it-" + i); } if (epsilon > 0.0 && results["RMSE"] - rmse_eval_stats.Min() > epsilon) { Console.Error.WriteLine(string.Format(CultureInfo.InvariantCulture, "{0} >> {1}", results["RMSE"], rmse_eval_stats.Min())); Console.Error.WriteLine("Reached convergence on training/validation data after {0} iterations.", i); break; } if (results["RMSE"] > rmse_cutoff || results["MAE"] > mae_cutoff) { Console.Error.WriteLine("Reached cutoff after {0} iterations.", i); break; } } } // for DisplayStats(); } else { TimeSpan seconds; if (load_model_file == string.Empty) { if (cross_validation > 0) { Console.Write(recommender.ToString()); Console.WriteLine(); var split = new RatingCrossValidationSplit(training_data, cross_validation); var results = MyMediaLite.Eval.Ratings.EvaluateOnSplit(recommender, split); // TODO if (search_hp) MyMediaLite.Eval.Ratings.DisplayResults(results); no_eval = true; recommender.Ratings = training_data; } else { if (search_hp) { // TODO --search-hp-criterion=RMSE double result = NelderMead.FindMinimum("RMSE", recommender); Console.Error.WriteLine("estimated quality (on split) {0}", result.ToString(CultureInfo.InvariantCulture)); // TODO give out hp search time } Console.Write(recommender.ToString()); seconds = Utils.MeasureTime(delegate() { recommender.Train(); }); Console.Write(" training_time " + seconds + " "); } } else { Recommender.LoadModel(recommender, load_model_file); Console.Write(recommender.ToString() + " "); } if (!no_eval) { if (online_eval) // TODO support also for prediction outputs (to allow external evaluation) { seconds = Utils.MeasureTime(delegate() { MyMediaLite.Eval.Ratings.DisplayResults(MyMediaLite.Eval.Ratings.EvaluateOnline(recommender, test_data)); }); } else { seconds = Utils.MeasureTime(delegate() { MyMediaLite.Eval.Ratings.DisplayResults(MyMediaLite.Eval.Ratings.Evaluate(recommender, test_data)); }); } Console.Write(" testing_time " + seconds); } if (compute_fit) { Console.Write("fit "); seconds = Utils.MeasureTime(delegate() { MyMediaLite.Eval.Ratings.DisplayResults(MyMediaLite.Eval.Ratings.Evaluate(recommender, training_data)); }); Console.Write(string.Format(CultureInfo.InvariantCulture, " fit_time {0,0:0.#####} ", seconds)); } if (prediction_file != string.Empty) { seconds = Utils.MeasureTime(delegate() { Console.WriteLine(); Prediction.WritePredictions(recommender, test_data, user_mapping, item_mapping, prediction_line, prediction_file); }); Console.Error.Write("predicting_time " + seconds); } Console.WriteLine(); Console.Error.WriteLine("memory {0}", Memory.Usage); } Recommender.SaveModel(recommender, save_model_file); }
static void Main(string[] args) { Assembly assembly = Assembly.GetExecutingAssembly(); Assembly.LoadFile(Path.GetDirectoryName(assembly.Location) + Path.DirectorySeparatorChar + "MyMediaLiteExperimental.dll"); AppDomain.CurrentDomain.UnhandledException += new UnhandledExceptionEventHandler(Handlers.UnhandledExceptionHandler); Console.CancelKeyPress += new ConsoleCancelEventHandler(AbortHandler); // recommender arguments string method = "BiasedMatrixFactorization"; string recommender_options = string.Empty; // help/version bool show_help = false; bool show_version = false; // arguments for iteration search int find_iter = 0; int max_iter = 500; double epsilon = 0; double rmse_cutoff = double.MaxValue; double mae_cutoff = double.MaxValue; // data arguments string data_dir = string.Empty; string user_attributes_file = string.Empty; string item_attributes_file = string.Empty; string user_relations_file = string.Empty; string item_relations_file = string.Empty; // other arguments bool online_eval = false; bool search_hp = false; string save_model_file = string.Empty; string load_model_file = string.Empty; int random_seed = -1; string prediction_file = string.Empty; string prediction_line = "{0}\t{1}\t{2}"; int cross_validation = 0; double split_ratio = 0; var p = new OptionSet() { // string-valued options { "training-file=", v => training_file = v }, { "test-file=", v => test_file = v }, { "recommender=", v => method = v }, { "recommender-options=", v => recommender_options += " " + v }, { "data-dir=", v => data_dir = v }, { "user-attributes=", v => user_attributes_file = v }, { "item-attributes=", v => item_attributes_file = v }, { "user-relations=", v => user_relations_file = v }, { "item-relations=", v => item_relations_file = v }, { "save-model=", v => save_model_file = v }, { "load-model=", v => load_model_file = v }, { "prediction-file=", v => prediction_file = v }, { "prediction-line=", v => prediction_line = v }, // integer-valued options { "find-iter=", (int v) => find_iter = v }, { "max-iter=", (int v) => max_iter = v }, { "random-seed=", (int v) => random_seed = v }, { "cross-validation=", (int v) => cross_validation = v }, // double-valued options { "epsilon=", (double v) => epsilon = v }, { "rmse-cutoff=", (double v) => rmse_cutoff = v }, { "mae-cutoff=", (double v) => mae_cutoff = v }, { "split-ratio=", (double v) => split_ratio = v }, // enum options { "rating-type=", (RatingType v) => rating_type = v }, { "file-format=", (RatingFileFormat v) => file_format = v }, // boolean options { "compute-fit", v => compute_fit = v != null }, { "online-evaluation", v => online_eval = v != null }, { "search-hp", v => search_hp = v != null }, { "help", v => show_help = v != null }, { "version", v => show_version = v != null }, }; IList<string> extra_args = p.Parse(args); // TODO make sure interaction of --find-iter and --cross-validation works properly bool no_eval = test_file == null; if (show_version) ShowVersion(); if (show_help) Usage(0); if (extra_args.Count > 0) Usage("Did not understand " + extra_args[0]); if (training_file == null) Usage("Parameter --training-file=FILE is missing."); if (cross_validation != 0 && split_ratio != 0) Usage("--cross-validation=K and --split-ratio=NUM are mutually exclusive."); if (random_seed != -1) MyMediaLite.Util.Random.InitInstance(random_seed); recommender = Recommender.CreateRatingPredictor(method); if (recommender == null) Usage(string.Format("Unknown method: '{0}'", method)); Recommender.Configure(recommender, recommender_options, Usage); // ID mapping objects if (file_format == RatingFileFormat.KDDCUP_2011) { user_mapping = new IdentityMapping(); item_mapping = new IdentityMapping(); } // load all the data LoadData(data_dir, user_attributes_file, item_attributes_file, user_relations_file, item_relations_file, !online_eval); Console.Error.WriteLine(string.Format(CultureInfo.InvariantCulture, "ratings range: [{0}, {1}]", recommender.MinRating, recommender.MaxRating)); if (split_ratio > 0) { var split = new RatingsSimpleSplit(training_data, split_ratio); recommender.Ratings = split.Train[0]; training_data = split.Train[0]; test_data = split.Test[0]; } Utils.DisplayDataStats(training_data, test_data, recommender); if (find_iter != 0) { if ( !(recommender is IIterativeModel) ) Usage("Only iterative recommenders support find_iter."); var iterative_recommender = (IIterativeModel) recommender; Console.WriteLine(recommender.ToString() + " "); if (load_model_file == string.Empty) recommender.Train(); else Recommender.LoadModel(iterative_recommender, load_model_file); if (compute_fit) Console.Write(string.Format(CultureInfo.InvariantCulture, "fit {0,0:0.#####} ", iterative_recommender.ComputeFit())); MyMediaLite.Eval.Ratings.DisplayResults(MyMediaLite.Eval.Ratings.Evaluate(recommender, test_data)); Console.WriteLine(" iteration " + iterative_recommender.NumIter); for (int i = (int) iterative_recommender.NumIter + 1; i <= max_iter; i++) { TimeSpan time = Utils.MeasureTime(delegate() { iterative_recommender.Iterate(); }); training_time_stats.Add(time.TotalSeconds); if (i % find_iter == 0) { if (compute_fit) { double fit = 0; time = Utils.MeasureTime(delegate() { fit = iterative_recommender.ComputeFit(); }); fit_time_stats.Add(time.TotalSeconds); Console.Write(string.Format(CultureInfo.InvariantCulture, "fit {0,0:0.#####} ", fit)); } Dictionary<string, double> results = null; time = Utils.MeasureTime(delegate() { results = MyMediaLite.Eval.Ratings.Evaluate(recommender, test_data); }); eval_time_stats.Add(time.TotalSeconds); MyMediaLite.Eval.Ratings.DisplayResults(results); rmse_eval_stats.Add(results["RMSE"]); Console.WriteLine(" iteration " + i); Recommender.SaveModel(recommender, save_model_file, i); if (prediction_file != string.Empty) Prediction.WritePredictions(recommender, test_data, user_mapping, item_mapping, prediction_line, prediction_file + "-it-" + i); if (epsilon > 0.0 && results["RMSE"] - rmse_eval_stats.Min() > epsilon) { Console.Error.WriteLine(string.Format(CultureInfo.InvariantCulture, "{0} >> {1}", results["RMSE"], rmse_eval_stats.Min())); Console.Error.WriteLine("Reached convergence on training/validation data after {0} iterations.", i); break; } if (results["RMSE"] > rmse_cutoff || results["MAE"] > mae_cutoff) { Console.Error.WriteLine("Reached cutoff after {0} iterations.", i); break; } } } // for DisplayStats(); } else { TimeSpan seconds; if (load_model_file == string.Empty) { if (cross_validation > 0) { Console.Write(recommender.ToString()); Console.WriteLine(); var split = new RatingCrossValidationSplit(training_data, cross_validation); var results = MyMediaLite.Eval.Ratings.EvaluateOnSplit(recommender, split); // TODO if (search_hp) MyMediaLite.Eval.Ratings.DisplayResults(results); no_eval = true; recommender.Ratings = training_data; } else { if (search_hp) { // TODO --search-hp-criterion=RMSE double result = NelderMead.FindMinimum("RMSE", recommender); Console.Error.WriteLine("estimated quality (on split) {0}", result.ToString(CultureInfo.InvariantCulture)); // TODO give out hp search time } Console.Write(recommender.ToString()); seconds = Utils.MeasureTime( delegate() { recommender.Train(); } ); Console.Write(" training_time " + seconds + " "); } } else { Recommender.LoadModel(recommender, load_model_file); Console.Write(recommender.ToString() + " "); } if (!no_eval) { if (online_eval) // TODO support also for prediction outputs (to allow external evaluation) seconds = Utils.MeasureTime(delegate() { MyMediaLite.Eval.Ratings.DisplayResults(MyMediaLite.Eval.Ratings.EvaluateOnline(recommender, test_data)); }); else seconds = Utils.MeasureTime(delegate() { MyMediaLite.Eval.Ratings.DisplayResults(MyMediaLite.Eval.Ratings.Evaluate(recommender, test_data)); }); Console.Write(" testing_time " + seconds); } if (compute_fit) { Console.Write("fit "); seconds = Utils.MeasureTime(delegate() { MyMediaLite.Eval.Ratings.DisplayResults(MyMediaLite.Eval.Ratings.Evaluate(recommender, training_data)); }); Console.Write(string.Format(CultureInfo.InvariantCulture, " fit_time {0,0:0.#####} ", seconds)); } if (prediction_file != string.Empty) { seconds = Utils.MeasureTime(delegate() { Console.WriteLine(); Prediction.WritePredictions(recommender, test_data, user_mapping, item_mapping, prediction_line, prediction_file); }); Console.Error.Write("predicting_time " + seconds); } Console.WriteLine(); Console.Error.WriteLine("memory {0}", Memory.Usage); } Recommender.SaveModel(recommender, save_model_file); }
static void Main(string[] args) { AppDomain.CurrentDomain.UnhandledException += new UnhandledExceptionEventHandler(Handlers.UnhandledExceptionHandler); Console.CancelKeyPress += new ConsoleCancelEventHandler(AbortHandler); // recommender arguments string method = null; string recommender_options = string.Empty; // help/version bool show_help = false; bool show_version = false; // arguments for iteration search int max_iter = 100; string measure = "RMSE"; double epsilon = 0; double cutoff = double.MaxValue; // other arguments bool search_hp = false; int random_seed = -1; string prediction_line = "{0}\t{1}\t{2}"; string prediction_header = null; var p = new OptionSet() { // string-valued options { "training-file=", v => training_file = v }, { "test-file=", v => test_file = v }, { "recommender=", v => method = v }, { "recommender-options=", v => recommender_options += " " + v }, { "data-dir=", v => data_dir = v }, { "user-attributes=", v => user_attributes_file = v }, { "item-attributes=", v => item_attributes_file = v }, { "user-relations=", v => user_relations_file = v }, { "item-relations=", v => item_relations_file = v }, { "save-model=", v => save_model_file = v }, { "load-model=", v => load_model_file = v }, { "save-user-mapping=", v => save_user_mapping_file = v }, { "save-item-mapping=", v => save_item_mapping_file = v }, { "load-user-mapping=", v => load_user_mapping_file = v }, { "load-item-mapping=", v => load_item_mapping_file = v }, { "prediction-file=", v => prediction_file = v }, { "prediction-line=", v => prediction_line = v }, { "prediction-header=", v => prediction_header = v }, { "chronological-split=", v => chronological_split = v }, { "measure=", v => measure = v }, // integer-valued options { "find-iter=", (int v) => find_iter = v }, { "max-iter=", (int v) => max_iter = v }, { "random-seed=", (int v) => random_seed = v }, { "cross-validation=", (uint v) => cross_validation = v }, // double-valued options { "epsilon=", (double v) => epsilon = v }, { "cutoff=", (double v) => cutoff = v }, { "test-ratio=", (double v) => test_ratio = v }, // enum options { "rating-type=", (RatingType v) => rating_type = v }, { "file-format=", (RatingFileFormat v) => file_format = v }, // boolean options { "compute-fit", v => compute_fit = v != null }, { "online-evaluation", v => online_eval = v != null }, { "show-fold-results", v => show_fold_results = v != null }, { "search-hp", v => search_hp = v != null }, { "no-id-mapping", v => no_id_mapping = v != null }, { "help", v => show_help = v != null }, { "version", v => show_version = v != null }, }; IList<string> extra_args = p.Parse(args); // ... some more command line parameter actions ... bool no_eval = true; if (test_ratio > 0 || test_file != null || chronological_split != null) no_eval = false; if (show_version) ShowVersion(); if (show_help) Usage(0); if (random_seed != -1) MyMediaLite.Util.Random.Seed = random_seed; // set up recommender if (load_model_file != null) recommender = (RatingPredictor) Model.Load(load_model_file); else if (method != null) recommender = Recommender.CreateRatingPredictor(method); else recommender = Recommender.CreateRatingPredictor("BiasedMatrixFactorization"); // in case something went wrong ... if (recommender == null && method != null) Usage(string.Format("Unknown rating prediction method: '{0}'", method)); if (recommender == null && load_model_file != null) Abort(string.Format("Could not load model from file {0}.", load_model_file)); CheckParameters(extra_args); recommender.Configure(recommender_options, (string m) => { Console.Error.WriteLine(m); Environment.Exit(-1); }); // ID mapping objects if (file_format == RatingFileFormat.KDDCUP_2011 || no_id_mapping) { user_mapping = new IdentityMapping(); item_mapping = new IdentityMapping(); } if (load_user_mapping_file != null) user_mapping = EntityMappingExtensions.LoadMapping(load_user_mapping_file); if (load_item_mapping_file != null) item_mapping = EntityMappingExtensions.LoadMapping(load_item_mapping_file); // load all the data LoadData(!online_eval); // if requested, save ID mappings if (save_user_mapping_file != null) user_mapping.SaveMapping(save_user_mapping_file); if (save_item_mapping_file != null) item_mapping.SaveMapping(save_item_mapping_file); Console.Error.WriteLine(string.Format(CultureInfo.InvariantCulture, "ratings range: [{0}, {1}]", recommender.MinRating, recommender.MaxRating)); if (test_ratio > 0) { var split = new RatingsSimpleSplit(training_data, test_ratio); recommender.Ratings = training_data = split.Train[0]; test_data = split.Test[0]; Console.Error.WriteLine(string.Format( CultureInfo.InvariantCulture, "test ratio {0}", test_ratio)); } if (chronological_split != null) { var split = chronological_split_ratio != -1 ? new RatingsChronologicalSplit((ITimedRatings) training_data, chronological_split_ratio) : new RatingsChronologicalSplit((ITimedRatings) training_data, chronological_split_time); recommender.Ratings = training_data = split.Train[0]; test_data = split.Test[0]; if (test_ratio != -1) Console.Error.WriteLine(string.Format(CultureInfo.InvariantCulture, "test ratio (chronological) {0}", chronological_split_ratio)); else Console.Error.WriteLine(string.Format(CultureInfo.InvariantCulture, "split time {0}", chronological_split_time)); } Console.Write(training_data.Statistics(test_data, user_attributes, item_attributes)); if (find_iter != 0) { if ( !(recommender is IIterativeModel) ) Abort("Only iterative recommenders (interface IIterativeModel) support --find-iter=N."); Console.WriteLine(recommender.ToString()); if (cross_validation > 1) { recommender.DoIterativeCrossValidation(cross_validation, max_iter, find_iter); } else { var iterative_recommender = (IIterativeModel) recommender; var eval_stats = new List<double>(); if (load_model_file == null) recommender.Train(); if (compute_fit) Console.WriteLine("fit {0} iteration {1}", recommender.Evaluate(training_data), iterative_recommender.NumIter); Console.WriteLine("{0} iteration {1}", recommender.Evaluate(test_data), iterative_recommender.NumIter); for (int it = (int) iterative_recommender.NumIter + 1; it <= max_iter; it++) { TimeSpan time = Wrap.MeasureTime(delegate() { iterative_recommender.Iterate(); }); training_time_stats.Add(time.TotalSeconds); if (it % find_iter == 0) { if (compute_fit) { time = Wrap.MeasureTime(delegate() { Console.WriteLine("fit {0} iteration {1}", recommender.Evaluate(training_data), it); }); fit_time_stats.Add(time.TotalSeconds); } RatingPredictionEvaluationResults results = null; time = Wrap.MeasureTime(delegate() { results = recommender.Evaluate(test_data); }); eval_time_stats.Add(time.TotalSeconds); eval_stats.Add(results[measure]); Console.WriteLine("{0} iteration {1}", results, it); Model.Save(recommender, save_model_file, it); if (prediction_file != null) recommender.WritePredictions(test_data, prediction_file + "-it-" + it, user_mapping, item_mapping, prediction_line, prediction_header); if (epsilon > 0.0 && results[measure] - eval_stats.Min() > epsilon) { Console.Error.WriteLine(string.Format(CultureInfo.InvariantCulture, "{0} >> {1}", results["RMSE"], eval_stats.Min())); Console.Error.WriteLine("Reached convergence on training/validation data after {0} iterations.", it); break; } if (results[measure] > cutoff) { Console.Error.WriteLine("Reached cutoff after {0} iterations.", it); break; } } } // for } } else { TimeSpan seconds; Console.Write(recommender + " "); if (load_model_file == null) { if (cross_validation > 1) { Console.WriteLine(); var results = recommender.DoCrossValidation(cross_validation, compute_fit, show_fold_results); Console.Write(results); no_eval = true; } else { if (search_hp) { double result = NelderMead.FindMinimum("RMSE", recommender); Console.Error.WriteLine("estimated quality (on split) {0}", result.ToString(CultureInfo.InvariantCulture)); } seconds = Wrap.MeasureTime( delegate() { recommender.Train(); } ); Console.Write(" training_time " + seconds + " "); } } if (!no_eval) { if (online_eval) seconds = Wrap.MeasureTime(delegate() { Console.Write(recommender.EvaluateOnline(test_data)); }); else seconds = Wrap.MeasureTime(delegate() { Console.Write(recommender.Evaluate(test_data)); }); Console.Write(" testing_time " + seconds); if (compute_fit) { Console.Write("\nfit "); seconds = Wrap.MeasureTime(delegate() { Console.Write(recommender.Evaluate(training_data)); }); Console.Write(" fit_time " + seconds); } if (prediction_file != null) { Console.WriteLine(); seconds = Wrap.MeasureTime(delegate() { recommender.WritePredictions(test_data, prediction_file, user_mapping, item_mapping, prediction_line, prediction_header); }); Console.Error.Write("prediction_time " + seconds); } } Console.WriteLine(); } Model.Save(recommender, save_model_file); DisplayStats(); }