コード例 #1
0
 protected override void SetupOptions()
 {
     options
     .Add("prediction-line=", v => prediction_line            = v)
     .Add("prediction-header=", v => prediction_header        = v)
     .Add("chronological-split=", v => chronological_split    = v)
     .Add("rating-type=", (RatingType v) => rating_type       = v)
     .Add("file-format=", (RatingFileFormat v) => file_format = v)
     .Add("search-hp", v => search_hp             = v != null)
     .Add("test-no-ratings", v => test_no_ratings = v != null);
 }
コード例 #2
0
    static void Main(string[] args)
    {
        Assembly assembly = Assembly.GetExecutingAssembly();

        Assembly.LoadFile(Path.GetDirectoryName(assembly.Location) + Path.DirectorySeparatorChar + "MyMediaLiteExperimental.dll");

        AppDomain.CurrentDomain.UnhandledException += new UnhandledExceptionEventHandler(Handlers.UnhandledExceptionHandler);
        Console.CancelKeyPress += new ConsoleCancelEventHandler(AbortHandler);

        // recommender arguments
        string method = "BiasedMatrixFactorization";
        string recommender_options = string.Empty;

        // help/version
        bool show_help    = false;
        bool show_version = false;

        // arguments for iteration search
        int    find_iter   = 0;
        int    max_iter    = 500;
        double epsilon     = 0;
        double rmse_cutoff = double.MaxValue;
        double mae_cutoff  = double.MaxValue;

        // data arguments
        string data_dir             = string.Empty;
        string user_attributes_file = string.Empty;
        string item_attributes_file = string.Empty;
        string user_relations_file  = string.Empty;
        string item_relations_file  = string.Empty;

        // other arguments
        bool   online_eval      = false;
        bool   search_hp        = false;
        string save_model_file  = string.Empty;
        string load_model_file  = string.Empty;
        int    random_seed      = -1;
        string prediction_file  = string.Empty;
        string prediction_line  = "{0}\t{1}\t{2}";
        int    cross_validation = 0;
        double split_ratio      = 0;

        var p = new OptionSet()
        {
            // string-valued options
            { "training-file=", v => training_file = v },
            { "test-file=", v => test_file = v },
            { "recommender=", v => method = v },
            { "recommender-options=", v => recommender_options += " " + v },
            { "data-dir=", v => data_dir = v },
            { "user-attributes=", v => user_attributes_file = v },
            { "item-attributes=", v => item_attributes_file = v },
            { "user-relations=", v => user_relations_file = v },
            { "item-relations=", v => item_relations_file = v },
            { "save-model=", v => save_model_file = v },
            { "load-model=", v => load_model_file = v },
            { "prediction-file=", v => prediction_file = v },
            { "prediction-line=", v => prediction_line = v },
            // integer-valued options
            { "find-iter=", (int v) => find_iter = v },
            { "max-iter=", (int v) => max_iter = v },
            { "random-seed=", (int v) => random_seed = v },
            { "cross-validation=", (int v) => cross_validation = v },
            // double-valued options
            { "epsilon=", (double v) => epsilon = v },
            { "rmse-cutoff=", (double v) => rmse_cutoff = v },
            { "mae-cutoff=", (double v) => mae_cutoff = v },
            { "split-ratio=", (double v) => split_ratio = v },
            // enum options
            { "rating-type=", (RatingType v) => rating_type = v },
            { "file-format=", (RatingFileFormat v) => file_format = v },
            // boolean options
            { "compute-fit", v => compute_fit = v != null },
            { "online-evaluation", v => online_eval = v != null },
            { "search-hp", v => search_hp = v != null },
            { "help", v => show_help = v != null },
            { "version", v => show_version = v != null },
        };
        IList <string> extra_args = p.Parse(args);

        // TODO make sure interaction of --find-iter and --cross-validation works properly

        bool no_eval = test_file == null;

        if (show_version)
        {
            ShowVersion();
        }
        if (show_help)
        {
            Usage(0);
        }

        if (extra_args.Count > 0)
        {
            Usage("Did not understand " + extra_args[0]);
        }

        if (training_file == null)
        {
            Usage("Parameter --training-file=FILE is missing.");
        }

        if (cross_validation != 0 && split_ratio != 0)
        {
            Usage("--cross-validation=K and --split-ratio=NUM are mutually exclusive.");
        }

        if (random_seed != -1)
        {
            MyMediaLite.Util.Random.InitInstance(random_seed);
        }

        recommender = Recommender.CreateRatingPredictor(method);
        if (recommender == null)
        {
            Usage(string.Format("Unknown method: '{0}'", method));
        }

        Recommender.Configure(recommender, recommender_options, Usage);

        // ID mapping objects
        if (file_format == RatingFileFormat.KDDCUP_2011)
        {
            user_mapping = new IdentityMapping();
            item_mapping = new IdentityMapping();
        }

        // load all the data
        LoadData(data_dir, user_attributes_file, item_attributes_file, user_relations_file, item_relations_file, !online_eval);

        Console.Error.WriteLine(string.Format(CultureInfo.InvariantCulture, "ratings range: [{0}, {1}]", recommender.MinRating, recommender.MaxRating));

        if (split_ratio > 0)
        {
            var split = new RatingsSimpleSplit(training_data, split_ratio);
            recommender.Ratings = split.Train[0];
            training_data       = split.Train[0];
            test_data           = split.Test[0];
        }

        Utils.DisplayDataStats(training_data, test_data, recommender);

        if (find_iter != 0)
        {
            if (!(recommender is IIterativeModel))
            {
                Usage("Only iterative recommenders support find_iter.");
            }
            var iterative_recommender = (IIterativeModel)recommender;
            Console.WriteLine(recommender.ToString() + " ");

            if (load_model_file == string.Empty)
            {
                recommender.Train();
            }
            else
            {
                Recommender.LoadModel(iterative_recommender, load_model_file);
            }

            if (compute_fit)
            {
                Console.Write(string.Format(CultureInfo.InvariantCulture, "fit {0,0:0.#####} ", iterative_recommender.ComputeFit()));
            }

            MyMediaLite.Eval.Ratings.DisplayResults(MyMediaLite.Eval.Ratings.Evaluate(recommender, test_data));
            Console.WriteLine(" iteration " + iterative_recommender.NumIter);

            for (int i = (int)iterative_recommender.NumIter + 1; i <= max_iter; i++)
            {
                TimeSpan time = Utils.MeasureTime(delegate() {
                    iterative_recommender.Iterate();
                });
                training_time_stats.Add(time.TotalSeconds);

                if (i % find_iter == 0)
                {
                    if (compute_fit)
                    {
                        double fit = 0;
                        time = Utils.MeasureTime(delegate() {
                            fit = iterative_recommender.ComputeFit();
                        });
                        fit_time_stats.Add(time.TotalSeconds);
                        Console.Write(string.Format(CultureInfo.InvariantCulture, "fit {0,0:0.#####} ", fit));
                    }

                    Dictionary <string, double> results = null;
                    time = Utils.MeasureTime(delegate() { results = MyMediaLite.Eval.Ratings.Evaluate(recommender, test_data); });
                    eval_time_stats.Add(time.TotalSeconds);
                    MyMediaLite.Eval.Ratings.DisplayResults(results);
                    rmse_eval_stats.Add(results["RMSE"]);
                    Console.WriteLine(" iteration " + i);

                    Recommender.SaveModel(recommender, save_model_file, i);
                    if (prediction_file != string.Empty)
                    {
                        Prediction.WritePredictions(recommender, test_data, user_mapping, item_mapping, prediction_line, prediction_file + "-it-" + i);
                    }

                    if (epsilon > 0.0 && results["RMSE"] - rmse_eval_stats.Min() > epsilon)
                    {
                        Console.Error.WriteLine(string.Format(CultureInfo.InvariantCulture, "{0} >> {1}", results["RMSE"], rmse_eval_stats.Min()));
                        Console.Error.WriteLine("Reached convergence on training/validation data after {0} iterations.", i);
                        break;
                    }
                    if (results["RMSE"] > rmse_cutoff || results["MAE"] > mae_cutoff)
                    {
                        Console.Error.WriteLine("Reached cutoff after {0} iterations.", i);
                        break;
                    }
                }
            }             // for

            DisplayStats();
        }
        else
        {
            TimeSpan seconds;

            if (load_model_file == string.Empty)
            {
                if (cross_validation > 0)
                {
                    Console.Write(recommender.ToString());
                    Console.WriteLine();
                    var split   = new RatingCrossValidationSplit(training_data, cross_validation);
                    var results = MyMediaLite.Eval.Ratings.EvaluateOnSplit(recommender, split);                     // TODO if (search_hp)
                    MyMediaLite.Eval.Ratings.DisplayResults(results);
                    no_eval             = true;
                    recommender.Ratings = training_data;
                }
                else
                {
                    if (search_hp)
                    {
                        // TODO --search-hp-criterion=RMSE
                        double result = NelderMead.FindMinimum("RMSE", recommender);
                        Console.Error.WriteLine("estimated quality (on split) {0}", result.ToString(CultureInfo.InvariantCulture));
                        // TODO give out hp search time
                    }

                    Console.Write(recommender.ToString());
                    seconds = Utils.MeasureTime(delegate() { recommender.Train(); });
                    Console.Write(" training_time " + seconds + " ");
                }
            }
            else
            {
                Recommender.LoadModel(recommender, load_model_file);
                Console.Write(recommender.ToString() + " ");
            }

            if (!no_eval)
            {
                if (online_eval)                  // TODO support also for prediction outputs (to allow external evaluation)
                {
                    seconds = Utils.MeasureTime(delegate() { MyMediaLite.Eval.Ratings.DisplayResults(MyMediaLite.Eval.Ratings.EvaluateOnline(recommender, test_data)); });
                }
                else
                {
                    seconds = Utils.MeasureTime(delegate() { MyMediaLite.Eval.Ratings.DisplayResults(MyMediaLite.Eval.Ratings.Evaluate(recommender, test_data)); });
                }

                Console.Write(" testing_time " + seconds);
            }

            if (compute_fit)
            {
                Console.Write("fit ");
                seconds = Utils.MeasureTime(delegate() {
                    MyMediaLite.Eval.Ratings.DisplayResults(MyMediaLite.Eval.Ratings.Evaluate(recommender, training_data));
                });
                Console.Write(string.Format(CultureInfo.InvariantCulture, " fit_time {0,0:0.#####} ", seconds));
            }

            if (prediction_file != string.Empty)
            {
                seconds = Utils.MeasureTime(delegate() {
                    Console.WriteLine();
                    Prediction.WritePredictions(recommender, test_data, user_mapping, item_mapping, prediction_line, prediction_file);
                });
                Console.Error.Write("predicting_time " + seconds);
            }

            Console.WriteLine();
            Console.Error.WriteLine("memory {0}", Memory.Usage);
        }
        Recommender.SaveModel(recommender, save_model_file);
    }
コード例 #3
0
    static void Main(string[] args)
    {
        Assembly assembly = Assembly.GetExecutingAssembly();
        Assembly.LoadFile(Path.GetDirectoryName(assembly.Location) + Path.DirectorySeparatorChar + "MyMediaLiteExperimental.dll");

        AppDomain.CurrentDomain.UnhandledException += new UnhandledExceptionEventHandler(Handlers.UnhandledExceptionHandler);
        Console.CancelKeyPress += new ConsoleCancelEventHandler(AbortHandler);

        // recommender arguments
        string method              = "BiasedMatrixFactorization";
        string recommender_options = string.Empty;

        // help/version
        bool show_help    = false;
        bool show_version = false;

        // arguments for iteration search
        int find_iter      = 0;
        int max_iter       = 500;
        double epsilon     = 0;
        double rmse_cutoff = double.MaxValue;
        double mae_cutoff  = double.MaxValue;

        // data arguments
        string data_dir             = string.Empty;
        string user_attributes_file = string.Empty;
        string item_attributes_file = string.Empty;
        string user_relations_file  = string.Empty;
        string item_relations_file  = string.Empty;

        // other arguments
        bool online_eval       = false;
        bool search_hp         = false;
        string save_model_file = string.Empty;
        string load_model_file = string.Empty;
        int random_seed        = -1;
        string prediction_file = string.Empty;
        string prediction_line = "{0}\t{1}\t{2}";
        int cross_validation   = 0;
        double split_ratio     = 0;

           	var p = new OptionSet() {
            // string-valued options
            { "training-file=",       v              => training_file        = v },
            { "test-file=",           v              => test_file            = v },
            { "recommender=",         v              => method               = v },
            { "recommender-options=", v              => recommender_options += " " + v },
           			{ "data-dir=",            v              => data_dir             = v },
            { "user-attributes=",     v              => user_attributes_file = v },
            { "item-attributes=",     v              => item_attributes_file = v },
            { "user-relations=",      v              => user_relations_file  = v },
            { "item-relations=",      v              => item_relations_file  = v },
            { "save-model=",          v              => save_model_file      = v },
            { "load-model=",          v              => load_model_file      = v },
            { "prediction-file=",     v              => prediction_file      = v },
            { "prediction-line=",     v              => prediction_line      = v },
            // integer-valued options
           			{ "find-iter=",           (int v)        => find_iter            = v },
            { "max-iter=",            (int v)        => max_iter             = v },
            { "random-seed=",         (int v)        => random_seed          = v },
            { "cross-validation=",    (int v)        => cross_validation     = v },
            // double-valued options
            { "epsilon=",             (double v)     => epsilon              = v },
            { "rmse-cutoff=",         (double v)     => rmse_cutoff          = v },
            { "mae-cutoff=",          (double v)     => mae_cutoff           = v },
            { "split-ratio=",         (double v)     => split_ratio          = v },
            // enum options
            { "rating-type=",         (RatingType v) => rating_type          = v },
            { "file-format=",         (RatingFileFormat v) => file_format    = v },
            // boolean options
            { "compute-fit",          v => compute_fit  = v != null },
            { "online-evaluation",    v => online_eval  = v != null },
            { "search-hp",            v => search_hp    = v != null },
            { "help",                 v => show_help    = v != null },
            { "version",              v => show_version = v != null },
           	  	};
           		IList<string> extra_args = p.Parse(args);

        // TODO make sure interaction of --find-iter and --cross-validation works properly

        bool no_eval = test_file == null;

        if (show_version)
            ShowVersion();
        if (show_help)
            Usage(0);

        if (extra_args.Count > 0)
            Usage("Did not understand " + extra_args[0]);

        if (training_file == null)
            Usage("Parameter --training-file=FILE is missing.");

        if (cross_validation != 0 && split_ratio != 0)
            Usage("--cross-validation=K and --split-ratio=NUM are mutually exclusive.");

        if (random_seed != -1)
            MyMediaLite.Util.Random.InitInstance(random_seed);

        recommender = Recommender.CreateRatingPredictor(method);
        if (recommender == null)
            Usage(string.Format("Unknown method: '{0}'", method));

        Recommender.Configure(recommender, recommender_options, Usage);

        // ID mapping objects
        if (file_format == RatingFileFormat.KDDCUP_2011)
        {
            user_mapping = new IdentityMapping();
            item_mapping = new IdentityMapping();
        }

        // load all the data
        LoadData(data_dir, user_attributes_file, item_attributes_file, user_relations_file, item_relations_file, !online_eval);

        Console.Error.WriteLine(string.Format(CultureInfo.InvariantCulture, "ratings range: [{0}, {1}]", recommender.MinRating, recommender.MaxRating));

        if (split_ratio > 0)
        {
            var split = new RatingsSimpleSplit(training_data, split_ratio);
            recommender.Ratings = split.Train[0];
            training_data = split.Train[0];
            test_data     = split.Test[0];
        }

        Utils.DisplayDataStats(training_data, test_data, recommender);

        if (find_iter != 0)
        {
            if ( !(recommender is IIterativeModel) )
                Usage("Only iterative recommenders support find_iter.");
            var iterative_recommender = (IIterativeModel) recommender;
            Console.WriteLine(recommender.ToString() + " ");

            if (load_model_file == string.Empty)
                recommender.Train();
            else
                Recommender.LoadModel(iterative_recommender, load_model_file);

            if (compute_fit)
                Console.Write(string.Format(CultureInfo.InvariantCulture, "fit {0,0:0.#####} ", iterative_recommender.ComputeFit()));

            MyMediaLite.Eval.Ratings.DisplayResults(MyMediaLite.Eval.Ratings.Evaluate(recommender, test_data));
            Console.WriteLine(" iteration " + iterative_recommender.NumIter);

            for (int i = (int) iterative_recommender.NumIter + 1; i <= max_iter; i++)
            {
                TimeSpan time = Utils.MeasureTime(delegate() {
                    iterative_recommender.Iterate();
                });
                training_time_stats.Add(time.TotalSeconds);

                if (i % find_iter == 0)
                {
                    if (compute_fit)
                    {
                        double fit = 0;
                        time = Utils.MeasureTime(delegate() {
                            fit = iterative_recommender.ComputeFit();
                        });
                        fit_time_stats.Add(time.TotalSeconds);
                        Console.Write(string.Format(CultureInfo.InvariantCulture, "fit {0,0:0.#####} ", fit));
                    }

                    Dictionary<string, double> results = null;
                    time = Utils.MeasureTime(delegate() { results = MyMediaLite.Eval.Ratings.Evaluate(recommender, test_data); });
                    eval_time_stats.Add(time.TotalSeconds);
                    MyMediaLite.Eval.Ratings.DisplayResults(results);
                    rmse_eval_stats.Add(results["RMSE"]);
                    Console.WriteLine(" iteration " + i);

                    Recommender.SaveModel(recommender, save_model_file, i);
                    if (prediction_file != string.Empty)
                        Prediction.WritePredictions(recommender, test_data, user_mapping, item_mapping, prediction_line, prediction_file + "-it-" + i);

                    if (epsilon > 0.0 && results["RMSE"] - rmse_eval_stats.Min() > epsilon)
                    {
                        Console.Error.WriteLine(string.Format(CultureInfo.InvariantCulture, "{0} >> {1}", results["RMSE"], rmse_eval_stats.Min()));
                        Console.Error.WriteLine("Reached convergence on training/validation data after {0} iterations.", i);
                        break;
                    }
                    if (results["RMSE"] > rmse_cutoff || results["MAE"] > mae_cutoff)
                    {
                            Console.Error.WriteLine("Reached cutoff after {0} iterations.", i);
                            break;
                    }
                }
            } // for

            DisplayStats();
        }
        else
        {
            TimeSpan seconds;

            if (load_model_file == string.Empty)
            {
                if (cross_validation > 0)
                {
                    Console.Write(recommender.ToString());
                    Console.WriteLine();
                    var split = new RatingCrossValidationSplit(training_data, cross_validation);
                    var results = MyMediaLite.Eval.Ratings.EvaluateOnSplit(recommender, split); // TODO if (search_hp)
                    MyMediaLite.Eval.Ratings.DisplayResults(results);
                    no_eval = true;
                    recommender.Ratings = training_data;
                }
                else
                {
                    if (search_hp)
                    {
                        // TODO --search-hp-criterion=RMSE
                        double result = NelderMead.FindMinimum("RMSE", recommender);
                        Console.Error.WriteLine("estimated quality (on split) {0}", result.ToString(CultureInfo.InvariantCulture));
                        // TODO give out hp search time
                    }

                    Console.Write(recommender.ToString());
                    seconds = Utils.MeasureTime( delegate() { recommender.Train(); } );
                    Console.Write(" training_time " + seconds + " ");
                }
            }
            else
            {
                Recommender.LoadModel(recommender, load_model_file);
                Console.Write(recommender.ToString() + " ");
            }

            if (!no_eval)
            {
                if (online_eval)  // TODO support also for prediction outputs (to allow external evaluation)
                    seconds = Utils.MeasureTime(delegate() { MyMediaLite.Eval.Ratings.DisplayResults(MyMediaLite.Eval.Ratings.EvaluateOnline(recommender, test_data)); });
                else
                    seconds = Utils.MeasureTime(delegate() { MyMediaLite.Eval.Ratings.DisplayResults(MyMediaLite.Eval.Ratings.Evaluate(recommender, test_data)); });

                Console.Write(" testing_time " + seconds);
            }

            if (compute_fit)
            {
                Console.Write("fit ");
                seconds = Utils.MeasureTime(delegate() {
                    MyMediaLite.Eval.Ratings.DisplayResults(MyMediaLite.Eval.Ratings.Evaluate(recommender, training_data));
                });
                Console.Write(string.Format(CultureInfo.InvariantCulture, " fit_time {0,0:0.#####} ", seconds));
            }

            if (prediction_file != string.Empty)
            {
                seconds = Utils.MeasureTime(delegate() {
                        Console.WriteLine();
                        Prediction.WritePredictions(recommender, test_data, user_mapping, item_mapping, prediction_line, prediction_file);
                });
                Console.Error.Write("predicting_time " + seconds);
            }

            Console.WriteLine();
            Console.Error.WriteLine("memory {0}", Memory.Usage);
        }
        Recommender.SaveModel(recommender, save_model_file);
    }
コード例 #4
0
    static void Main(string[] args)
    {
        AppDomain.CurrentDomain.UnhandledException += new UnhandledExceptionEventHandler(Handlers.UnhandledExceptionHandler);
        Console.CancelKeyPress += new ConsoleCancelEventHandler(AbortHandler);

        // recommender arguments
        string method              = null;
        string recommender_options = string.Empty;

        // help/version
        bool show_help    = false;
        bool show_version = false;

        // arguments for iteration search
        int max_iter   = 100;
        string measure = "RMSE";
        double epsilon = 0;
        double cutoff  = double.MaxValue;

        // other arguments
        bool search_hp             = false;
        int random_seed            = -1;
        string prediction_line     = "{0}\t{1}\t{2}";
        string prediction_header   = null;

        var p = new OptionSet() {
            // string-valued options
            { "training-file=",       v              => training_file        = v },
            { "test-file=",           v              => test_file            = v },
            { "recommender=",         v              => method               = v },
            { "recommender-options=", v              => recommender_options += " " + v },
            { "data-dir=",            v              => data_dir             = v },
            { "user-attributes=",     v              => user_attributes_file = v },
            { "item-attributes=",     v              => item_attributes_file = v },
            { "user-relations=",      v              => user_relations_file  = v },
            { "item-relations=",      v              => item_relations_file  = v },
            { "save-model=",          v              => save_model_file      = v },
            { "load-model=",          v              => load_model_file      = v },
            { "save-user-mapping=",   v              => save_user_mapping_file = v },
            { "save-item-mapping=",   v              => save_item_mapping_file = v },
            { "load-user-mapping=",   v              => load_user_mapping_file = v },
            { "load-item-mapping=",   v              => load_item_mapping_file = v },
            { "prediction-file=",     v              => prediction_file      = v },
            { "prediction-line=",     v              => prediction_line      = v },
            { "prediction-header=",   v              => prediction_header    = v },
            { "chronological-split=", v              => chronological_split  = v },
            { "measure=",             v              => measure              = v },
            // integer-valued options
            { "find-iter=",           (int v)        => find_iter            = v },
            { "max-iter=",            (int v)        => max_iter             = v },
            { "random-seed=",         (int v)        => random_seed          = v },
            { "cross-validation=",    (uint v)       => cross_validation     = v },
            // double-valued options
            { "epsilon=",             (double v)     => epsilon              = v },
            { "cutoff=",              (double v)     => cutoff               = v },
            { "test-ratio=",          (double v)     => test_ratio           = v },
            // enum options
            { "rating-type=",         (RatingType v) => rating_type          = v },
            { "file-format=",         (RatingFileFormat v) => file_format    = v },
            // boolean options
            { "compute-fit",          v => compute_fit       = v != null },
            { "online-evaluation",    v => online_eval       = v != null },
            { "show-fold-results",    v => show_fold_results = v != null },
            { "search-hp",            v => search_hp         = v != null },
            { "no-id-mapping",        v => no_id_mapping     = v != null },
            { "help",                 v => show_help         = v != null },
            { "version",              v => show_version      = v != null },
        };
        IList<string> extra_args = p.Parse(args);

        // ... some more command line parameter actions ...
        bool no_eval = true;
        if (test_ratio > 0 || test_file != null || chronological_split != null)
            no_eval = false;

        if (show_version)
            ShowVersion();
        if (show_help)
            Usage(0);

        if (random_seed != -1)
            MyMediaLite.Util.Random.Seed = random_seed;

        // set up recommender
        if (load_model_file != null)
            recommender = (RatingPredictor) Model.Load(load_model_file);
        else if (method != null)
            recommender = Recommender.CreateRatingPredictor(method);
        else
            recommender = Recommender.CreateRatingPredictor("BiasedMatrixFactorization");
        // in case something went wrong ...
        if (recommender == null && method != null)
            Usage(string.Format("Unknown rating prediction method: '{0}'", method));
        if (recommender == null && load_model_file != null)
            Abort(string.Format("Could not load model from file {0}.", load_model_file));

        CheckParameters(extra_args);

        recommender.Configure(recommender_options, (string m) => { Console.Error.WriteLine(m); Environment.Exit(-1); });

        // ID mapping objects
        if (file_format == RatingFileFormat.KDDCUP_2011 || no_id_mapping)
        {
            user_mapping = new IdentityMapping();
            item_mapping = new IdentityMapping();
        }
        if (load_user_mapping_file != null)
            user_mapping = EntityMappingExtensions.LoadMapping(load_user_mapping_file);
        if (load_item_mapping_file != null)
            item_mapping = EntityMappingExtensions.LoadMapping(load_item_mapping_file);

        // load all the data
        LoadData(!online_eval);

        // if requested, save ID mappings
        if (save_user_mapping_file != null)
            user_mapping.SaveMapping(save_user_mapping_file);
        if (save_item_mapping_file != null)
            item_mapping.SaveMapping(save_item_mapping_file);

        Console.Error.WriteLine(string.Format(CultureInfo.InvariantCulture, "ratings range: [{0}, {1}]", recommender.MinRating, recommender.MaxRating));

        if (test_ratio > 0)
        {
            var split = new RatingsSimpleSplit(training_data, test_ratio);
            recommender.Ratings = training_data = split.Train[0];
            test_data = split.Test[0];
            Console.Error.WriteLine(string.Format( CultureInfo.InvariantCulture, "test ratio {0}", test_ratio));
        }
        if (chronological_split != null)
        {
            var split = chronological_split_ratio != -1
                            ? new RatingsChronologicalSplit((ITimedRatings) training_data, chronological_split_ratio)
                            : new RatingsChronologicalSplit((ITimedRatings) training_data, chronological_split_time);
            recommender.Ratings = training_data = split.Train[0];
            test_data = split.Test[0];
            if (test_ratio != -1)
                Console.Error.WriteLine(string.Format(CultureInfo.InvariantCulture, "test ratio (chronological) {0}", chronological_split_ratio));
            else
                Console.Error.WriteLine(string.Format(CultureInfo.InvariantCulture, "split time {0}", chronological_split_time));
        }

        Console.Write(training_data.Statistics(test_data, user_attributes, item_attributes));

        if (find_iter != 0)
        {
            if ( !(recommender is IIterativeModel) )
                Abort("Only iterative recommenders (interface IIterativeModel) support --find-iter=N.");

            Console.WriteLine(recommender.ToString());

            if (cross_validation > 1)
            {
                recommender.DoIterativeCrossValidation(cross_validation, max_iter, find_iter);
            }
            else
            {
                var iterative_recommender = (IIterativeModel) recommender;
                var eval_stats = new List<double>();

                if (load_model_file == null)
                    recommender.Train();

                if (compute_fit)
                    Console.WriteLine("fit {0} iteration {1}", recommender.Evaluate(training_data), iterative_recommender.NumIter);

                Console.WriteLine("{0} iteration {1}", recommender.Evaluate(test_data), iterative_recommender.NumIter);

                for (int it = (int) iterative_recommender.NumIter + 1; it <= max_iter; it++)
                {
                    TimeSpan time = Wrap.MeasureTime(delegate() {
                        iterative_recommender.Iterate();
                    });
                    training_time_stats.Add(time.TotalSeconds);

                    if (it % find_iter == 0)
                    {
                        if (compute_fit)
                        {
                            time = Wrap.MeasureTime(delegate() {
                                Console.WriteLine("fit {0} iteration {1}", recommender.Evaluate(training_data), it);
                            });
                            fit_time_stats.Add(time.TotalSeconds);
                        }

                        RatingPredictionEvaluationResults results = null;
                        time = Wrap.MeasureTime(delegate() { results = recommender.Evaluate(test_data); });
                        eval_time_stats.Add(time.TotalSeconds);
                        eval_stats.Add(results[measure]);
                        Console.WriteLine("{0} iteration {1}", results, it);

                        Model.Save(recommender, save_model_file, it);
                        if (prediction_file != null)
                            recommender.WritePredictions(test_data, prediction_file + "-it-" + it, user_mapping, item_mapping, prediction_line, prediction_header);

                        if (epsilon > 0.0 && results[measure] - eval_stats.Min() > epsilon)
                        {
                            Console.Error.WriteLine(string.Format(CultureInfo.InvariantCulture, "{0} >> {1}", results["RMSE"], eval_stats.Min()));
                            Console.Error.WriteLine("Reached convergence on training/validation data after {0} iterations.", it);
                            break;
                        }
                        if (results[measure] > cutoff)
                        {
                            Console.Error.WriteLine("Reached cutoff after {0} iterations.", it);
                            break;
                        }
                    }
                } // for
            }
        }
        else
        {
            TimeSpan seconds;

            Console.Write(recommender + " ");

            if (load_model_file == null)
            {
                if (cross_validation > 1)
                {
                    Console.WriteLine();
                    var results = recommender.DoCrossValidation(cross_validation, compute_fit, show_fold_results);
                    Console.Write(results);
                    no_eval = true;
                }
                else
                {
                    if (search_hp)
                    {
                        double result = NelderMead.FindMinimum("RMSE", recommender);
                        Console.Error.WriteLine("estimated quality (on split) {0}", result.ToString(CultureInfo.InvariantCulture));
                    }

                    seconds = Wrap.MeasureTime( delegate() { recommender.Train(); } );
                    Console.Write(" training_time " + seconds + " ");
                }
            }

            if (!no_eval)
            {
                if (online_eval)
                    seconds = Wrap.MeasureTime(delegate() { Console.Write(recommender.EvaluateOnline(test_data)); });
                else
                    seconds = Wrap.MeasureTime(delegate() { Console.Write(recommender.Evaluate(test_data)); });

                Console.Write(" testing_time " + seconds);

                if (compute_fit)
                {
                    Console.Write("\nfit ");
                    seconds = Wrap.MeasureTime(delegate() {
                        Console.Write(recommender.Evaluate(training_data));
                    });
                    Console.Write(" fit_time " + seconds);
                }

                if (prediction_file != null)
                {
                    Console.WriteLine();
                    seconds = Wrap.MeasureTime(delegate() {
                        recommender.WritePredictions(test_data, prediction_file, user_mapping, item_mapping, prediction_line, prediction_header);
                    });
                    Console.Error.Write("prediction_time " + seconds);
                }
            }

            Console.WriteLine();
        }
        Model.Save(recommender, save_model_file);
        DisplayStats();
    }