/// <summary> /// Runs a random walk of n steps along a landscape defined by a crossover operator and returns its results. /// </summary> /// <param name="steps">Number of steps.</param> /// <param name="searchOperator">Operator defining a neighbourhood.</param> /// <returns></returns> public RandomWalk RandomWalk(int steps, CrossoverOperator searchOperator) { RandomWalk statistics = new RandomWalk(steps); Chromosome parent1 = ChromosomeFactory.RandomSolution(Problem.GeneCount(), Problem); Chromosome parent2 = ChromosomeFactory.RandomSolution(Problem.GeneCount(), Problem); bool firstParent = RandomGeneratorThreadSafe.NextBool(); Chromosome parent = (firstParent ? parent1 : parent2), child; GatherData(parent, 0, statistics); const int minPopSize = 8, maxPopSize = 15; int popSize = RandomGeneratorThreadSafe.NextInt(minPopSize, maxPopSize); Chromosome[] supportPopulation = new Chromosome[popSize]; for (int i = 0; i < popSize; ++i) { supportPopulation[i] = ChromosomeFactory.RandomSolution(Problem.GeneCount(), Problem); } IGene[] childGenes1, childGenes2; for (int i = 0; i < steps; ++i) { searchOperator.Run(parent1.Genes, parent2.Genes, out childGenes1, out childGenes2); child = ChromosomeFactory.MakeChromosome(Problem, RandomGeneratorThreadSafe.NextBool() ? childGenes1 : childGenes2); GatherData(child, i, statistics); parent1 = child; parent2 = supportPopulation[RandomGeneratorThreadSafe.NextInt(popSize)]; } return(statistics); }
private bool[] PrepareUniform(int geneCount) { return(Enumerable.Repeat(0, geneCount).Select(i => RandomGeneratorThreadSafe.NextBool()).ToArray()); }