private static RandomForestRegressionSolution GridSearchWithCrossvalidation(IRegressionProblemData problemData, out RFParameter bestParameters, int seed = 3141519) { double rmsError, outOfBagRmsError, avgRelError, outOfBagAvgRelError; bestParameters = RandomForestUtil.GridSearch(problemData, numberOfFolds, shuffleFolds, randomForestParameterRanges, seed, maximumDegreeOfParallelism); var model = RandomForestModel.CreateRegressionModel(problemData, problemData.TrainingIndices, bestParameters.N, bestParameters.R, bestParameters.M, seed, out rmsError, out outOfBagRmsError, out avgRelError, out outOfBagAvgRelError); return((RandomForestRegressionSolution)model.CreateRegressionSolution(problemData)); }
private static RandomForestClassificationSolution GridSearch(IClassificationProblemData problemData, out RFParameter bestParameters, int seed = 3141519) { double rmsError, outOfBagRmsError, relClassificationError, outOfBagRelClassificationError; bestParameters = RandomForestUtil.GridSearch(problemData, randomForestParameterRanges, seed, maximumDegreeOfParallelism); var model = RandomForestModel.CreateClassificationModel(problemData, problemData.TrainingIndices, bestParameters.N, bestParameters.R, bestParameters.M, seed, out rmsError, out outOfBagRmsError, out relClassificationError, out outOfBagRelClassificationError); return((RandomForestClassificationSolution)model.CreateClassificationSolution(problemData)); }