public void Initialize(bool skipStringDistributions = false) { // DO NOT make this a constructor, because it makes the test not notice complete lack of serialization as an empty object is set up exactly as the thing // you are trying to deserialize. this.pareto = new Pareto(1.2, 3.5); this.poisson = new Poisson(2.3); this.wishart = new Wishart(20, new PositiveDefiniteMatrix(new double[, ] { { 22, 21 }, { 21, 23 } })); this.vectorGaussian = new VectorGaussian(Vector.FromArray(13, 14), new PositiveDefiniteMatrix(new double[, ] { { 16, 15 }, { 15, 17 } })); this.unnormalizedDiscrete = UnnormalizedDiscrete.FromLogProbs(DenseVector.FromArray(5.1, 5.2, 5.3)); this.pointMass = PointMass <double> .Create(1.1); this.gaussian = new Gaussian(11.0, 12.0); this.nonconjugateGaussian = new NonconjugateGaussian(1.2, 2.3, 3.4, 4.5); this.gamma = new Gamma(9.0, 10.0); this.gammaPower = new GammaPower(5.6, 2.8, 3.4); this.discrete = new Discrete(6.0, 7.0, 8.0); this.conjugateDirichlet = new ConjugateDirichlet(1.2, 2.3, 3.4, 4.5); this.dirichlet = new Dirichlet(3.0, 4.0, 5.0); this.beta = new Beta(2.0, 1.0); this.binomial = new Binomial(5, 0.8); this.bernoulli = new Bernoulli(0.6); this.sparseBernoulliList = SparseBernoulliList.Constant(4, new Bernoulli(0.1)); this.sparseBernoulliList[1] = new Bernoulli(0.9); this.sparseBernoulliList[3] = new Bernoulli(0.7); this.sparseBetaList = SparseBetaList.Constant(5, new Beta(2.0, 2.0)); this.sparseBetaList[0] = new Beta(3.0, 4.0); this.sparseBetaList[1] = new Beta(5.0, 6.0); this.sparseGaussianList = SparseGaussianList.Constant(6, Gaussian.FromMeanAndPrecision(0.1, 0.2)); this.sparseGaussianList[4] = Gaussian.FromMeanAndPrecision(0.3, 0.4); this.sparseGaussianList[5] = Gaussian.FromMeanAndPrecision(0.5, 0.6); this.sparseGammaList = SparseGammaList.Constant(1, Gamma.FromShapeAndRate(1.0, 2.0)); this.truncatedGamma = new TruncatedGamma(1.2, 2.3, 3.4, 4.5); this.truncatedGaussian = new TruncatedGaussian(1.2, 3.4, 5.6, 7.8); this.wrappedGaussian = new WrappedGaussian(1.2, 2.3, 3.4); ga = Distribution <double> .Array(new[] { this.gaussian, this.gaussian }); vga = Distribution <Vector> .Array(new[] { this.vectorGaussian, this.vectorGaussian }); ga2D = Distribution <double> .Array(new[, ] { { this.gaussian, this.gaussian }, { this.gaussian, this.gaussian } }); vga2D = Distribution <Vector> .Array(new[, ] { { this.vectorGaussian, this.vectorGaussian }, { this.vectorGaussian, this.vectorGaussian } }); gaJ = Distribution <double> .Array(new[] { new[] { this.gaussian, this.gaussian }, new[] { this.gaussian, this.gaussian } }); vgaJ = Distribution <Vector> .Array(new[] { new[] { this.vectorGaussian, this.vectorGaussian }, new[] { this.vectorGaussian, this.vectorGaussian } }); var gp = new GaussianProcess(new ConstantFunction(0), new SquaredExponential(0)); var basis = Util.ArrayInit(2, i => Vector.FromArray(1.0 * i)); this.sparseGp = new SparseGP(new SparseGPFixed(gp, basis)); this.quantileEstimator = new QuantileEstimator(0.01); this.quantileEstimator.Add(5); this.outerQuantiles = OuterQuantiles.FromDistribution(3, this.quantileEstimator); this.innerQuantiles = InnerQuantiles.FromDistribution(3, this.outerQuantiles); if (!skipStringDistributions) { // String distributions can not be serialized by some formatters (namely BinaryFormatter) // That is fine because this combination is never used in practice this.stringDistribution1 = StringDistribution.String("aa") .Append(StringDistribution.OneOf("b", "ccc")).Append("dddd"); this.stringDistribution2 = new StringDistribution(); this.stringDistribution2.SetToProduct(StringDistribution.OneOf("a", "b"), StringDistribution.OneOf("b", "c")); } }
public void Initialize() { // DO NOT make this a constructor, because it makes the test not notice complete lack of serialization as an empty object is set up exactly as the thing // you are trying to deserialize. this.pareto = new Pareto(1.2, 3.5); this.poisson = new Poisson(2.3); this.wishart = new Wishart(20, new PositiveDefiniteMatrix(new double[, ] { { 22, 21 }, { 21, 23 } })); this.vectorGaussian = new VectorGaussian(Vector.FromArray(13, 14), new PositiveDefiniteMatrix(new double[, ] { { 16, 15 }, { 15, 17 } })); this.unnormalizedDiscrete = UnnormalizedDiscrete.FromLogProbs(DenseVector.FromArray(5.1, 5.2, 5.3)); this.pointMass = PointMass <double> .Create(1.1); this.gaussian = new Gaussian(11.0, 12.0); this.nonconjugateGaussian = new NonconjugateGaussian(1.2, 2.3, 3.4, 4.5); this.gamma = new Gamma(9.0, 10.0); this.gammaPower = new GammaPower(5.6, 2.8, 3.4); this.discrete = new Discrete(6.0, 7.0, 8.0); this.conjugateDirichlet = new ConjugateDirichlet(1.2, 2.3, 3.4, 4.5); this.dirichlet = new Dirichlet(3.0, 4.0, 5.0); this.beta = new Beta(2.0, 1.0); this.binomial = new Binomial(5, 0.8); this.bernoulli = new Bernoulli(0.6); this.sparseBernoulliList = SparseBernoulliList.Constant(4, new Bernoulli(0.1)); this.sparseBernoulliList[1] = new Bernoulli(0.9); this.sparseBernoulliList[3] = new Bernoulli(0.7); this.sparseBetaList = SparseBetaList.Constant(5, new Beta(2.0, 2.0)); this.sparseBetaList[0] = new Beta(3.0, 4.0); this.sparseBetaList[1] = new Beta(5.0, 6.0); this.sparseGaussianList = SparseGaussianList.Constant(6, Gaussian.FromMeanAndPrecision(0.1, 0.2)); this.sparseGaussianList[4] = Gaussian.FromMeanAndPrecision(0.3, 0.4); this.sparseGaussianList[5] = Gaussian.FromMeanAndPrecision(0.5, 0.6); this.sparseGammaList = SparseGammaList.Constant(1, Gamma.FromShapeAndRate(1.0, 2.0)); this.truncatedGamma = new TruncatedGamma(1.2, 2.3, 3.4, 4.5); this.truncatedGaussian = new TruncatedGaussian(1.2, 3.4, 5.6, 7.8); this.wrappedGaussian = new WrappedGaussian(1.2, 2.3, 3.4); ga = Distribution <double> .Array(new[] { this.gaussian, this.gaussian }); vga = Distribution <Vector> .Array(new[] { this.vectorGaussian, this.vectorGaussian }); ga2D = Distribution <double> .Array(new[, ] { { this.gaussian, this.gaussian }, { this.gaussian, this.gaussian } }); vga2D = Distribution <Vector> .Array(new[, ] { { this.vectorGaussian, this.vectorGaussian }, { this.vectorGaussian, this.vectorGaussian } }); gaJ = Distribution <double> .Array(new[] { new[] { this.gaussian, this.gaussian }, new[] { this.gaussian, this.gaussian } }); vgaJ = Distribution <Vector> .Array(new[] { new[] { this.vectorGaussian, this.vectorGaussian }, new[] { this.vectorGaussian, this.vectorGaussian } }); var gp = new GaussianProcess(new ConstantFunction(0), new SquaredExponential(0)); var basis = Util.ArrayInit(2, i => Vector.FromArray(1.0 * i)); this.sparseGp = new SparseGP(new SparseGPFixed(gp, basis)); this.quantileEstimator = new QuantileEstimator(0.01); this.quantileEstimator.Add(5); }