コード例 #1
0
ファイル: Program.cs プロジェクト: istiophorus/AI
        private static void TrainNetwork(LearningData learningData, String networkPath)
        {
            ActivationNetwork network = new ActivationNetwork(
                UseBipolar ? (IActivationFunction) new BipolarSigmoidFunction(1) : (IActivationFunction) new SigmoidFunction(),
                784,
                784,
                10);

            network.Randomize();

            Int32 epochIndex = 0;

            new NguyenWidrow(network).Randomize();

            //// create teacher
            //PerceptronLearning teacher = new PerceptronLearning(network);// new BackPropagationLearning(network);
            //PerceptronLearning teacher = new PerceptronLearning(network);// new BackPropagationLearning(network);
            ParallelResilientBackpropagationLearning teacher = new ParallelResilientBackpropagationLearning(network);

            //teacher.LearningRate = 0.0125;
            ////teacher.Momentum = 0.5f;

            Double error = Double.MaxValue;

            Double previousError = Double.MaxValue;

            Stopwatch sw = new Stopwatch();

            Int32 counter = 100;

            // loop
            while (counter > 0)
            {
                sw.Reset();

                sw.Start();

                // run epoch of learning procedure
                error = teacher.RunEpoch(learningData.Input, learningData.Output);

                sw.Stop();

                //if (error > previousError)
                //{
                //	teacher.LearningRate = teacher.LearningRate * 0.5f;
                //}

                Console.WriteLine(String.Format("{0} {1} {2}", epochIndex, error, sw.Elapsed.TotalSeconds));

                epochIndex++;

                previousError = error;

                counter--;
            }

            network.Save(networkPath);

            //Double[] output = network.Compute(learningData.Input[0]);
        }
コード例 #2
0
        public override void Learn()
        {
            var inputs  = new double[this.TrainingData.Count][];
            var outputs = new double[this.TrainingData.Count][];

            for (var i = 0; i < this.TrainingData.Count; i++)
            {
                var(x, y) = this.TrainingData[i];
                inputs[i] = x;

                var o = new double[OutputCount];
                for (var j = 0; j < o.Length; j++)
                {
                    o[j] = j == (int)y ? 1 : -1;
                }
                outputs[i] = o;
            }

            new NguyenWidrow(this._network).Randomize();
            var teacher = new ParallelResilientBackpropagationLearning(this._network);

            double error;
            var    count = 0;

            do
            {
                error = teacher.RunEpoch(inputs, outputs);
                Console.WriteLine("{0}回目: {1}", ++count, error);
            } while (error > 1e-5);
        }
コード例 #3
0
        private void BtnLearn_Click(object sender, EventArgs e)
        {
            lblStatus.Text      = "Hãy chờ vài phút!";
            lblStatus.ForeColor = Color.Red;
            lblStatus.Visible   = true;
            int rows = dgvLearnSet.Rows.Count;

            double[][] input  = new double[rows - 1][];
            double[][] output = new double[rows - 1][];
            teacherBL = new ParallelResilientBackpropagationLearning(network);
            double error = int.MaxValue;
            double lbl;

            for (int i = 0; i < rows - 1; i++)
            {
                input[i]  = (double[])dgvLearnSet.Rows[i].Cells[3].Value;
                lbl       = Convert.ToDouble(dgvLearnSet.Rows[i].Cells[2].Value);
                output[i] = Out(Convert.ToInt32(dgvLearnSet.Rows[i].Cells[2].Value));
            }
            while (true)
            {
                error = teacherBL.RunEpoch(input, output);
                if (error < 0.1)
                {
                    break;
                }
            }
            btnVerify.Enabled   = true;
            btnClassify.Enabled = true;
            lblStatus.Text      = "Đã huấn luyện xong!";
            lblStatus.ForeColor = Color.DarkGreen;
        }
コード例 #4
0
    // Use this for initialization
    void Start()
    {
        _neuralNetwork = new ActivationNetwork(new SigmoidFunction(sigmoidAlphaValue), 2, 2, 1);
        _neuralTeacher = new ParallelResilientBackpropagationLearning(_neuralNetwork);

        // set learning rate and momentum
        //_neuralTeacher.Reset(initialStep);
    }
コード例 #5
0
        public override double TrainOnDataSet(SamplesSet samplesSet, int epochs_count, double acceptableError, bool parallel = true)
        {
            //  Сначала надо сконструировать массивы входов и выходов
            double[][] inputs  = new double[samplesSet.Count][];
            double[][] outputs = new double[samplesSet.Count][];

            //  Теперь массивы из samplesSet группируем в inputs и outputs
            for (int i = 0; i < samplesSet.Count; ++i)
            {
                inputs[i]  = samplesSet[i].input;
                outputs[i] = samplesSet[i].output;
            }

            //  Текущий счётчик эпох
            int epoch_to_run = 0;

            //  Создаём "обучателя" - либо параллельного, либо последовательного
            ISupervisedLearning teacher;

            if (parallel)
            {
                teacher = new ParallelResilientBackpropagationLearning(network);
            }
            else
            {
                teacher = new ResilientBackpropagationLearning(network);
            }

            double error = double.PositiveInfinity;

            #if DEBUG
            StreamWriter errorsFile = File.CreateText("errors.csv");
            #endif

            stopWatch.Restart();

            while (epoch_to_run < epochs_count && error > acceptableError)
            {
                epoch_to_run++;
                error = teacher.RunEpoch(inputs, outputs);
                #if DEBUG
                errorsFile.WriteLine(error);
                #endif
                updateDelegate((epoch_to_run * 1.0) / epochs_count, error, stopWatch.Elapsed);
            }

            #if DEBUG
            errorsFile.Close();
            #endif

            updateDelegate(1.0, error, stopWatch.Elapsed);

            stopWatch.Stop();

            return(error);
        }
コード例 #6
0
 public Network(int input_sz, int output_sz = 10)
 {
     input_size  = input_sz;
     output_size = output_sz;
     net         = new ActivationNetwork(new Accord.Neuro.BipolarSigmoidFunction(),
                                         input_size, input_size * 3, input_size * 2, input_size, 100, output_size);
     backprop = new ParallelResilientBackpropagationLearning(net);
     nguen    = new NguyenWidrow(net);
     nguen.Randomize();
 }
コード例 #7
0
ファイル: MMNodeMLP.cs プロジェクト: stephane-lallee/Myline
        public override void addModality(Signal s, string label = null)
        {
            base.addModality(s, label);

            int[] hiddenWithOutput = new int[hiddenLayers.Count() + 1];
            hiddenLayers.CopyTo(hiddenWithOutput, 0);
            hiddenWithOutput[hiddenLayers.Count()] = InputCount;

            network = new ActivationNetwork(new SigmoidFunction(sigmoidAlphaValue), InputCount, hiddenWithOutput);
            teacher = new ParallelResilientBackpropagationLearning(network);

            // set learning rate and momentum
            teacher.Reset(initialStep);
        }
コード例 #8
0
        public double TarinNetwork(float[][] inputs, float[][] outputs, int samplingCellsCount, int inputNeuronsCount,
                                   int outputNeuronsCount, int hiddenLayerNeuronsCount, double learningRate,
                                   int iterations, System.Windows.Forms.Label labelTrainTest, System.Windows.Forms.Label labelTrainningAccuracy,
                                   System.Windows.Forms.Label labelValidationAccuracy, ZedGraphControl zedGraphControl)
        {
            network = new ActivationNetwork(
                new SigmoidFunction(), inputNeuronsCount, hiddenLayerNeuronsCount, outputNeuronsCount);
            ParallelResilientBackpropagationLearning teacher = new ParallelResilientBackpropagationLearning(network);

            teacher.LearningRate = learningRate;

            double[][] trainInput  = GeneralOpertor.GetArray(inputs, 0.8, true, inputNeuronsCount);
            double[][] testInput   = GeneralOpertor.GetArray(inputs, 0.8, false, inputNeuronsCount);
            double[][] trainOutput = GeneralOpertor.GetArray(outputs, 0.8, true, outputNeuronsCount);
            double[][] testOutput  = GeneralOpertor.GetArray(outputs, 0.8, false, outputNeuronsCount);

            int    iteration = 0;
            double error     = 1;

            zedGraphControl.GraphPane.CurveList.Clear();
            PointPairList list = new PointPairList();

            while ((error > 0.01) && (iteration <= iterations))
            {
                error = teacher.RunEpoch(trainInput, trainOutput) * 2 / samplingCellsCount;
                if (iteration == 0)
                {
                    list.Add(iteration, error);
                    zedGraphControl.GraphPane.AddCurve("Error", list, System.Drawing.Color.FromArgb(255, 0, 0));
                    zedGraphControl.GraphPane.AxisChange();
                }
                else if ((iteration % 30 == 0) || (iteration == iterations))
                {
                    zedGraphControl.GraphPane.CurveList[0].AddPoint(iteration, error);
                    zedGraphControl.GraphPane.AxisChange();
                    labelTrainTest.Text = "Iteration:" + iteration + ", Error:" + error.ToString("0.00000");
                    Application.DoEvents();
                }
                zedGraphControl.Refresh();
                iteration++;
            }

            double accuracy = GetAccuracy(trainInput, trainOutput, network);

            labelTrainningAccuracy.Text = (accuracy * 100).ToString("0.000") + " %";
            accuracy = GetAccuracy(testInput, testOutput, network);
            labelValidationAccuracy.Text = (accuracy * 100).ToString("0.000") + " %";

            return(error);
        }
コード例 #9
0
        /// <summary>
        /// 训练神经网络
        /// </summary>
        public void Train()
        {
            updateConsoleEvent("---------神经网络训练开始------");
            var samples = getSamples(this.numOfSample);

            double[][] inputs = (from cell in samples
                                 select getOneInput(cell)).ToArray <double[]>();


            int[] classes = (from cell in samples
                             select getOneClass(cell)).ToArray <int>();

            double[][] outputs = Accord.Statistics.Tools.Expand(classes, 0, +1);

            // Create an activation function for the net
            //var function = new BipolarSigmoidFunction();
            var function = new SigmoidFunction();


            // Create an activation network with the function and
            //  4 inputs, 5 hidden neurons and 3 possible outputs:
            int numOfInput  = inputs[0].Length;
            int numOfHidden = numOfInput * 2 / 3;
            int numOfOut    = outputs[0].Length;

            this.network = new ActivationNetwork(function, numOfInput, numOfHidden, numOfOut);

            // Randomly initialize the network
            new NguyenWidrow(this.network).Randomize();

            // Teach the network using parallel Rprop:
            var teacher = new ParallelResilientBackpropagationLearning(this.network);

            double correctRate = 0.0;
            int    times       = this.timesOfTrain;
            int    cnt         = 0;

            while (cnt < times)
            {
                teacher.RunEpoch(inputs, outputs);
                if (cnt % 10 == 0)
                {
                    correctRate = GetError(inputs, outputs, classes);
                    updateConsoleEvent("正确率:" + correctRate * 100 + "%");
                }
                cnt++;
            }
            updateConsoleEvent("训练结束。最终正确率:" + correctRate * 100 + "%");
            updateConsoleEvent("---------神经网络训练结束------");
        }
コード例 #10
0
        public void CreateActivationNetworkTest()
        {
            double[][] inputs =
            {
                new double[] { 1, 1, 1, 0, 0, 0 },
                new double[] { 1, 0, 1, 0, 0, 0 },
                new double[] { 1, 1, 1, 0, 0, 0 },
                new double[] { 0, 0, 1, 1, 1, 0 },
                new double[] { 0, 0, 1, 1, 0, 0 },
                new double[] { 0, 0, 1, 1, 1, 0 }
            };

            double[][] outputs =
            {
                new double[] { 0 },
                new double[] { 0 },
                new double[] { 0 },
                new double[] { 1 },
                new double[] { 1 },
                new double[] { 1 },
            };

            RestrictedBoltzmannMachine network = createNetwork(inputs);

            ActivationNetwork ann = network.ToActivationNetwork(new SigmoidFunction(1), outputs: 1);

            ParallelResilientBackpropagationLearning teacher = new ParallelResilientBackpropagationLearning(ann);

            for (int i = 0; i < 100; i++)
            {
                teacher.RunEpoch(inputs, outputs);
            }

            double[] actual = new double[outputs.Length];
            for (int i = 0; i < inputs.Length; i++)
            {
                actual[i] = ann.Compute(inputs[i])[0];
            }

            Assert.AreEqual(0, actual[0], 1e-10);
            Assert.AreEqual(0, actual[1], 1e-10);
            Assert.AreEqual(0, actual[2], 1e-10);
            Assert.AreEqual(1, actual[3], 1e-10);
            Assert.AreEqual(1, actual[4], 1e-10);
            Assert.AreEqual(1, actual[5], 1e-10);
        }
コード例 #11
0
        public void CreateActivationNetworkTest()
        {
            double[][] inputs =
            {
                new double[] { 1, 1, 1, 0, 0, 0 },
                new double[] { 1, 0, 1, 0, 0, 0 },
                new double[] { 1, 1, 1, 0, 0, 0 },
                new double[] { 0, 0, 1, 1, 1, 0 },
                new double[] { 0, 0, 1, 1, 0, 0 },
                new double[] { 0, 0, 1, 1, 1, 0 }
            };

            double[][] outputs =
            {
                new double[] { 0 },
                new double[] { 0 },
                new double[] { 0 },
                new double[] { 1 },
                new double[] { 1 },
                new double[] { 1 },
            };

            DeepBeliefNetwork network = createNetwork(inputs);

            ParallelResilientBackpropagationLearning teacher = new ParallelResilientBackpropagationLearning(network);

            for (int i = 0; i < 100; i++)
            {
                teacher.RunEpoch(inputs, outputs);
            }

            double[] actual = new double[outputs.Length];
            for (int i = 0; i < inputs.Length; i++)
            {
                actual[i] = network.Compute(inputs[i])[0];
            }

            Assert.AreEqual(0, actual[0], 1e-10);
            Assert.AreEqual(0, actual[1], 1e-10);
            Assert.AreEqual(0, actual[2], 1e-10);
            Assert.AreEqual(1, actual[3], 1e-10);
            Assert.AreEqual(1, actual[4], 1e-10);
            Assert.AreEqual(1, actual[5], 1e-10);
        }
コード例 #12
0
        public void Train(int epoch, FinishEpoch finishEpochEvent, FinishLearning finish)
        {
            new NguyenWidrow(network).Randomize();
            ParallelResilientBackpropagationLearning teacher = new ParallelResilientBackpropagationLearning(network);

            double[,] s = new double[outputs.Length, 2];

            int iteration = 1;

            while (true)
            {
                double error = teacher.RunEpoch(inputs, outputs) / outputs.Length;

                // calculate solution
                for (int j = 0; j < outputs.Length; j++)
                {
                    double y = network.Compute(inputs[j])[0];
                    s[j, 1] = y.Scale(-1, 1, -100, 100);
                    s[j, 0] = j;
                }

                // calculate error
                double learningError = 0.0;
                for (int j = 0; j < outputs.Length; j++)
                {
                    double[] x        = inputs[j];
                    double   expected = outputs[j][0];
                    double   actual   = network.Compute(x)[0];
                    learningError += Math.Abs(expected - actual);
                }
                finishEpochEvent(s, error);

                // increase current iteration
                iteration++;

                // check if we need to stop
                if ((epoch != 0) && (iteration > epoch))
                {
                    break;
                }
            }
            finish();
        }
コード例 #13
0
        public void RunEpochTest1()
        {
            Accord.Math.Tools.SetupGenerator(0);

            double[][] input =
            {
                new double[] { -1, -1 },
                new double[] { -1,  1 },
                new double[] {  1, -1 },
                new double[] {  1,  1 }
            };

            double[][] output =
            {
                new double[] { -1 },
                new double[] {  1 },
                new double[] {  1 },
                new double[] { -1 }
            };

            Neuron.RandGenerator = new ThreadSafeRandom(0);
            ActivationNetwork network = new ActivationNetwork(
                new BipolarSigmoidFunction(2), 2, 2, 1);

            var teacher = new ParallelResilientBackpropagationLearning(network);

            double error = 1.0;

            while (error > 1e-5)
            {
                error = teacher.RunEpoch(input, output);
            }

            for (int i = 0; i < input.Length; i++)
            {
                double actual   = network.Compute(input[i])[0];
                double expected = output[i][0];

                Assert.AreEqual(expected, actual, 0.01);
                Assert.IsFalse(Double.IsNaN(actual));
            }
        }
コード例 #14
0
ファイル: SVMSignal.cs プロジェクト: godtopus/Lean
        public void TrainNN(List <double[]> inputs, List <int> outputs, List <double> weights = null)
        {
            var tempInputs = _inputs.Take(_inputs.Count).Concat(inputs).ToArray();

            tempInputs = Accord.Statistics.Tools.ZScores(tempInputs);
            var trainingInputs  = tempInputs.Skip(_inputs.Count).Take(inputs.Count).ToArray();
            var trainingOutputs = Jagged.OneHot(outputs.ToArray());

            var network = new ActivationNetwork(new GaussianFunction(), trainingInputs.First().Length, 5, 2);

            _dbn = network;

            // Initialize the network with Gaussian weights
            new GaussianWeights(network, 0.1).Randomize();

            // Setup the learning algorithm.
            var teacher = new ParallelResilientBackpropagationLearning(network);

            double error = Double.MaxValue;

            for (int i = 0; i < 5000; i++)
            {
                error = teacher.RunEpoch(trainingInputs, trainingOutputs);
            }

            // Test the resulting accuracy.
            int correct = 0;

            for (int i = 0; i < trainingInputs.Length; i++)
            {
                double[] outputValues = network.Compute(inputs[i]);
                double   outputResult = outputValues.First() >= 0.5 ? 1 : 0;

                if (outputResult == trainingOutputs[i].First())
                {
                    correct++;
                }
            }

            Console.WriteLine("DBN Correct: {0} Total: {1} Accuracy: {2}, Training Error: {3}", correct, trainingOutputs.Length, (double)correct / (double)trainingOutputs.Length, error);
        }
コード例 #15
0
        /// <summary>
        /// Constructs a new SOM node.
        /// </summary>
        /// <param name="inputDim">The dimension of the input</param>
        /// <param name="mapSize">The dimension of the map</param>
        /// <param name="useOnlyWinnerAsOutput">Should only the position of the winner be used as an output. False means the whole map activity will be used.</param>
        public IONodeAFMLP(Point2D inputDim, Point2D outputDim, int[] hiddenLayersBottomUp, int[] hiddenLayerTopDown)
            : base(inputDim, outputDim)
        {
            int inputCount  = (int)inputDim.X * (int)inputDim.Y;
            int outputCount = (int)outputDim.X * (int)outputDim.Y;

            int[] hiddenWithOutput = new int[hiddenLayersBottomUp.Count() + 1];
            hiddenLayersBottomUp.CopyTo(hiddenWithOutput, 0);
            hiddenWithOutput[hiddenLayersBottomUp.Count()] = outputCount;
            bottomUpNet     = new ActivationNetwork(new SigmoidFunction(sigmoidAlphaValue), inputCount, hiddenWithOutput);
            bottomUpTeacher = new ParallelResilientBackpropagationLearning(bottomUpNet);

            int[] hiddenWithInput = new int[hiddenLayerTopDown.Count() + 1];
            hiddenLayerTopDown.CopyTo(hiddenWithInput, 0);
            hiddenWithInput[hiddenLayerTopDown.Count()] = inputCount;
            topDownNet     = new ActivationNetwork(new SigmoidFunction(sigmoidAlphaValue), outputCount, hiddenWithInput);
            topDownTeacher = new ParallelResilientBackpropagationLearning(topDownNet);

            // set learning rate and momentum
            bottomUpTeacher.Reset(initialStep);
            topDownTeacher.Reset(initialStep);
        }
コード例 #16
0
        /// <summary>
        /// Обучение сети одному образу
        /// </summary>
        /// <param name="sample"></param>
        /// <returns>Количество итераций для достижения заданного уровня ошибки</returns>
        public override int Train(Sample sample, bool parallel = true)
        {
            //  Создаём "обучателя" - либо параллельного, либо последовательного
            ISupervisedLearning teacher;

            if (parallel)
            {
                teacher = new ParallelResilientBackpropagationLearning(network);
            }
            else
            {
                teacher = new ResilientBackpropagationLearning(network);
            }

            int iters = 1;

            while (teacher.Run(sample.input, sample.output) > desiredErrorValue)
            {
                ++iters;
            }
            return(iters);
        }
コード例 #17
0
ファイル: EgoAllo.cs プロジェクト: edgarbc/MultiLevelRL
        public EgoAlloValue(IEqualityComparer <int[]> StateComparer, IEqualityComparer <int[]> ActionComparer, List <int[]> AvailableActions, int[] StartState, params object[] parameters)
            : base(StateComparer, ActionComparer, AvailableActions, StartState, parameters)
        {
            if (parameters.Length > 0)
            {
                fullPredictionMode = (bool)parameters[0];
            }

            stateComparer    = StateComparer;
            actionComparer   = ActionComparer;
            availableActions = AvailableActions;

            alloModel = new ModelBasedValue <int[], int[]>(StateComparer, ActionComparer, availableActions, StartState, true)
            {
                defaultQ = 10.3
            };
            egoModel = new ModelFreeValue <int[], int[]>(StateComparer, actionComparer, availableActions, StartState)
            {
                alpha = 0.9
            };

            network = new ActivationNetwork(new BipolarSigmoidFunction(2), 10, 10, 3);
            teacher = new ParallelResilientBackpropagationLearning(network);
        }
コード例 #18
0
ファイル: Program.cs プロジェクト: DenBy1726/Hots-Platform
        static void Main(string[] args)
        {
            if (Directory.Exists("./Source/Network") == false)
            {
                Directory.CreateDirectory("./Source/Network");
            }

            cfg = new Config("Classifier.config");

            log("info", "Конфиг:" + cfg.ToString());
            //File.WriteAllText("Classifier.config", JSonParser.Save(cfg, typeof(Config)));

            System.Globalization.CultureInfo customCulture = (System.Globalization.CultureInfo)System.Threading.Thread.CurrentThread.CurrentCulture.Clone();
            customCulture.NumberFormat.NumberDecimalSeparator = ".";

            System.Threading.Thread.CurrentThread.CurrentCulture = customCulture;



            // Convert the DataTable to input and output vectors
            foreach (var file in cfg.Input)
            {
                log("info", "Конфиг:" + cfg.ToString());
                List <Tuple <double[], double> > dataset =
                    new List <Tuple <double[], double> >();
                string root = Path.GetFileNameWithoutExtension(file);
                using (CSVParser parser = new CSVParser().Load(file))
                {
                    string[] buff;
                    double[] inputBuff;
                    double   outputBuff;
                    while ((buff = parser.Next()) != null)
                    {
                        inputBuff  = buff.Take(buff.Length - 1).ToArray().ToDouble();
                        outputBuff = Double.Parse(buff.Skip(buff.Length - 1).ToArray()[0]);
                        dataset.Add(new Tuple <double[], double>(inputBuff, outputBuff));
                    }
                }
                dataset = dataset
                          .Where(x => cfg.Filter.IsInside(x.Item2))
                          .Take(cfg.Filter.Max)
                          .ToList();
                log("info", "Конечный размер датасета:" + dataset.Count);
                if (cfg.Network.Shuffle)
                {
                    dataset.Shuffle();
                }
                var trainData = dataset
                                .Take((int)(dataset.Count * (1 - cfg.Network.ValidationPercent)))
                                .ToArray();
                var validData = dataset
                                .Skip((int)(dataset.Count * (1 - cfg.Network.ValidationPercent)))
                                .ToArray();

                var trainInput  = trainData.Select(x => x.Item1).ToArray();
                var trainOutput = trainData.Select(x => new double[] { x.Item2 }).ToArray();
                var validInput  = validData.Select(x => x.Item1).ToArray();
                var validOutput = validData.Select(x => new double[] { x.Item2 }).ToArray();
                var topology    = new List <int>(cfg.Network.Layers)
                {
                    1
                };
                var network = new ActivationNetwork(
                    new SigmoidFunction(), trainInput[0].Length, topology.ToArray());
                var teacher = new ParallelResilientBackpropagationLearning(network);

                LogInfo current = new LogInfo()
                {
                    error      = double.PositiveInfinity,
                    iteration  = 0,
                    percent    = 0,
                    validError = double.PositiveInfinity
                };

                LogInfo better = current;

                double previous;
                do
                {
                    previous      = current.error;
                    current.error = teacher.RunEpoch(trainInput, trainOutput);

                    if (cfg.MoreInfoLog)
                    {
                        int[] answers =
                            validInput.Apply(network.Compute).GetColumn(0).
                            Apply(x => x > 0.5 ? 1 : 0);
                        current.validError = teacher.ComputeError(validInput, validOutput);
                        int[] outputs = validOutput.Apply(x => x[0] > 0.5 ? 1 : 0);
                        int   pos     = 0;
                        for (int j = 0; j < answers.Length; j++)
                        {
                            if (answers[j] == outputs[j])
                            {
                                pos++;
                            }
                        }
                        current.validPercent = (double)pos / (double)answers.Length;

                        answers =
                            trainInput.Apply(network.Compute).GetColumn(0).
                            Apply(x => x > 0.5 ? 1 : 0);

                        outputs = trainOutput.Apply(x => x[0] > 0.5 ? 1 : 0);

                        pos = 0;
                        for (int j = 0; j < answers.Length; j++)
                        {
                            if (answers[j] == outputs[j])
                            {
                                pos++;
                            }
                        }
                        current.percent = (double)pos / (double)answers.Length;

                        log(current.iteration, current.error, current.validError,
                            current.percent, current.validPercent);
                    }
                    else
                    {
                        smalllog(current.iteration, current.error);
                    }
                    if (current.error < cfg.Cancelation.Error)
                    {
                        break;
                    }
                    if (Math.Abs(previous - current.error) < cfg.Cancelation.Step)
                    {
                        break;
                    }
                    if (current.iteration == cfg.Cancelation.MaxEpoch)
                    {
                        break;
                    }
                    if (current.percent >= cfg.Validation.Percent)
                    {
                        break;
                    }
                    current.iteration++;

                    if (better.validPercent < current.validPercent)
                    {
                        better = current;
                        SaveNetwork($"Best_{root}", validInput,
                                    validOutput, network, better, root);
                    }
                    better.WriteTop();
                } while (true);
                SaveNetwork(root, trainInput, trainOutput, network, current, root);
            }
        }
コード例 #19
0
        // Worker thread
        void SearchSolution()
        {
            // number of learning samples
            int samples = data.Length - predictionSize - windowSize;
            // data transformation factor
            double factor = 1.7 / chart.RangeY.Length;
            double yMin   = chart.RangeY.Min;

            // prepare learning data
            double[][] input  = new double[samples][];
            double[][] output = new double[samples][];

            for (int i = 0; i < samples; i++)
            {
                input[i]  = new double[windowSize];
                output[i] = new double[1];

                // set input
                for (int j = 0; j < windowSize; j++)
                {
                    input[i][j] = (data[i + j] - yMin) * factor - 0.85;
                }
                // set output
                output[i][0] = (data[i + windowSize] - yMin) * factor - 0.85;
            }

            // create multi-layer neural network
            ActivationNetwork network = new ActivationNetwork(
                new BipolarSigmoidFunction(sigmoidAlphaValue),
                windowSize, windowSize * 2, 1);

            // create teacher
            var teacher = new ParallelResilientBackpropagationLearning(network);

            teacher.Reset(initialStep);

            // run at least one backpropagation epoch
            //teacher2.RunEpoch(input, output);

            // iterations
            int iteration = 1;

            // solution array
            int solutionSize = data.Length - windowSize;

            double[,] solution = new double[solutionSize, 2];
            double[] networkInput = new double[windowSize];

            // calculate X values to be used with solution function
            for (int j = 0; j < solutionSize; j++)
            {
                solution[j, 0] = j + windowSize;
            }

            // loop
            while (!needToStop)
            {
                // run epoch of learning procedure
                double error = teacher.RunEpoch(input, output) / samples;

                // calculate solution and learning and prediction errors
                double learningError   = 0.0;
                double predictionError = 0.0;
                // go through all the data
                for (int i = 0, n = data.Length - windowSize; i < n; i++)
                {
                    // put values from current window as network's input
                    for (int j = 0; j < windowSize; j++)
                    {
                        networkInput[j] = (data[i + j] - yMin) * factor - 0.85;
                    }

                    // evalue the function
                    solution[i, 1] = (network.Compute(networkInput)[0] + 0.85) / factor + yMin;

                    // calculate prediction error
                    if (i >= n - predictionSize)
                    {
                        predictionError += Math.Abs(solution[i, 1] - data[windowSize + i]);
                    }
                    else
                    {
                        learningError += Math.Abs(solution[i, 1] - data[windowSize + i]);
                    }
                }
                // update solution on the chart
                chart.UpdateDataSeries("solution", solution);

                // set current iteration's info
                SetText(currentIterationBox, iteration.ToString());
                SetText(currentLearningErrorBox, learningError.ToString("F3"));
                SetText(currentPredictionErrorBox, predictionError.ToString("F3"));

                // increase current iteration
                iteration++;

                // check if we need to stop
                if ((iterations != 0) && (iteration > iterations))
                {
                    break;
                }
            }

            // show new solution
            for (int j = windowSize, k = 0, n = data.Length; j < n; j++, k++)
            {
                AddSubItem(dataList, j, solution[k, 1].ToString());
            }

            // enable settings controls
            EnableControls(true);
        }
コード例 #20
0
        // Worker thread
        void SearchSolution()
        {
            // number of learning samples
            int samples = data.GetLength(0);
            // data transformation factor
            double yFactor = 1.7 / chart.RangeY.Length;
            double yMin    = chart.RangeY.Min;
            double xFactor = 2.0 / chart.RangeX.Length;
            double xMin    = chart.RangeX.Min;

            // prepare learning data
            double[][] input  = new double[samples][];
            double[][] output = new double[samples][];

            for (int i = 0; i < samples; i++)
            {
                input[i]  = new double[1];
                output[i] = new double[1];

                // set input
                input[i][0] = (data[i, 0] - xMin) * xFactor - 1.0;
                // set output
                output[i][0] = (data[i, 1] - yMin) * yFactor - 0.85;
            }

            // create multi-layer neural network
            ActivationNetwork network = new ActivationNetwork(
                new BipolarSigmoidFunction(sigmoidAlphaValue),
                1, neuronsInFirstLayer, 1);

            if (useNguyenWidrow)
            {
                NguyenWidrow initializer = new NguyenWidrow(network);
                initializer.Randomize();
            }

            // create teacher
            var teacher = new ParallelResilientBackpropagationLearning(network);

            // iterations
            int iteration = 1;

            // solution array
            double[,] solution = new double[50, 2];
            double[] networkInput = new double[1];

            // calculate X values to be used with solution function
            for (int j = 0; j < 50; j++)
            {
                solution[j, 0] = chart.RangeX.Min + (double)j * chart.RangeX.Length / 49;
            }

            // loop
            while (!needToStop)
            {
                // run epoch of learning procedure
                double error = teacher.RunEpoch(input, output) / samples;

                // calculate solution
                for (int j = 0; j < 50; j++)
                {
                    networkInput[0] = (solution[j, 0] - xMin) * xFactor - 1.0;
                    solution[j, 1]  = (network.Compute(networkInput)[0] + 0.85) / yFactor + yMin;
                }
                chart.UpdateDataSeries("solution", solution);
                // calculate error
                double learningError = 0.0;
                for (int j = 0, k = data.GetLength(0); j < k; j++)
                {
                    networkInput[0] = input[j][0];
                    learningError  += Math.Abs(data[j, 1] - ((network.Compute(networkInput)[0] + 0.85) / yFactor + yMin));
                }

                // set current iteration's info
                SetText(currentIterationBox, iteration.ToString());
                SetText(currentErrorBox, learningError.ToString("F3"));

                // increase current iteration
                iteration++;

                // check if we need to stop
                if ((iterations != 0) && (iteration > iterations))
                {
                    break;
                }
            }


            // enable settings controls
            EnableControls(true);
        }
コード例 #21
0
ファイル: AutoIt.cs プロジェクト: paweenwich/MyAutoIt
        private void trainToolStripMenuItem_Click_1(object sender, EventArgs e)
        {
            ImageTrainDataSet testDataSet = FeatureDetector.GetAllTrainImageData(testDataPath, configure.trainFolders);

            testDataSet.flgCache = true;

            int[]    labelIndexs = trainData.GetLabelIndexs();
            String[] labels      = trainData.GetLabels();
            var      bow         = Accord.IO.Serializer.Load <BagOfVisualWords>(dataPath + String.Format(@"\train-{0}.bow", bowSize));

            double[][] features  = trainData.GetFeature(bow, mask);
            int        numOutput = trainData.GetNumOutput();
            var        function  = new SigmoidFunction();

            logger.logStr("Start Training");
            bool flgFound = false;
            int  count    = 0;

            while ((flgFound == false) && (count < 100))
            {
                count++;
                var network = new ActivationNetwork(function, bow.NumberOfOutputs, 20, numOutput);
                new NguyenWidrow(network).Randomize();
                var teacher = new ParallelResilientBackpropagationLearning(network);

                BowImageClassifier trainImgClassifier = new BowImageClassifier();
                trainImgClassifier.Init(bow, network, mask);
                //creat output
                double[][] outputs    = trainData.GetOutputs(numOutput);
                double     avgError   = 10000.0;
                double     prevError  = avgError;
                double     bestError  = avgError;
                int        errorCount = 0;
                while ((errorCount < 3) && (avgError > 0.00001))
                {
                    //Application.DoEvents();
                    double[] errors = new double[10];
                    for (int i = 0; i < 10; i++)
                    {
                        errors[i] = teacher.RunEpoch(features, outputs);
                    }
                    avgError = errors.Average();
                    if (prevError > avgError)
                    {
                        int trainError   = trainImgClassifier.Evaluate(trainData);
                        int testError    = trainImgClassifier.Evaluate(testData);
                        int testSetError = trainImgClassifier.Evaluate(testDataSet);
                        logger.logStr(String.Format("{0} {1} {2} {3} {4} #{5}", avgError, prevError, trainError, testError, testSetError, errorCount));
                        prevError = avgError;
                        //save best error
                        if (bestError > avgError)
                        {
                            bestError = avgError;
                            Accord.IO.Serializer.Save(network, dataPath + String.Format(@"\train-{0}.net", bow.NumberOfOutputs));
                        }
                        if (trainError + testError + testSetError == 0)
                        {
                            flgFound = true;
                            Accord.IO.Serializer.Save(network, dataPath + String.Format(@"\train-{0}.net", bow.NumberOfOutputs));
                            break;
                        }
                    }
                    else
                    {
                        logger.logStr(String.Format("{0}", avgError));
                        prevError = 10000.0;
                        errorCount++;
                    }
                    Application.DoEvents();
                }
                logger.logStr("Done " + bestError + " " + count);
            }
        }
コード例 #22
0
        static void Main(string[] args)
        {
            int          VERBOSITY = 0;
            StreamWriter logFile   = new StreamWriter("logFileParallel.csv");

            logFile.WriteLine("maze,trainingSet,trainSetSize,testSet,performance,lengthPerformance,trainingError,sizeOfSetUniqueElements");

            for (int run = 0; run < 10; run++)
            {
                Console.WriteLine("****************************************************RUN NUMBER " + run);

                //---------------------------------------------  CREATE MAZE ---------------------------------------------
                Maze   maze     = null;
                string mazeType = "";
                Dictionary <string, List <Sequence> > setsToUse = new Dictionary <string, List <Sequence> >();

                for (int mazeToUse = 1; mazeToUse < 2; mazeToUse++)
                {
                    if (mazeToUse == 0)
                    {
                        Generate_T(out maze, out setsToUse);
                        mazeType = "Maze-T";
                    }

                    if (mazeToUse == 1)
                    {
                        Generate_21(out maze, out setsToUse);
                        mazeType = "Maze-21";
                    }

                    if (mazeToUse == 2)
                    {
                        Generate_25(out maze, out setsToUse);
                        mazeType = "Maze-25";
                    }
                    //double randomPathQuality = 0.0;
                    //ComputePathQualityRandom(maze, out randomPathQuality, 1000);
                    //Console.WriteLine("Random Path Quality = " + randomPathQuality.ToString("N2"));
                    //Console.ReadKey();

                    //Loop through all the training sets
                    foreach (string trainSetName in setsToUse.Keys)
                    {
                        Console.WriteLine("------------------");
                        Console.WriteLine(mazeType + " " + trainSetName);

                        List <Sequence> setToUse = setsToUse[trainSetName];

                        //---------------------------------------------  PREPARE DATA ---------------------------------------------
                        bool forceBidirectionality = true;

                        List <Triplet> triplets = GetTripletsFromSequences(setToUse, forceBidirectionality);
                        if (VERBOSITY > 1)
                        {
                            Console.WriteLine("\n---------------------------------------------------------");
                            Console.WriteLine("TRAINING SET : " + trainSetName);

                            Console.WriteLine("---------------------------------------------------------");
                            Console.WriteLine("Training set elements");
                            foreach (Triplet item in triplets)
                            {
                                Console.WriteLine(item.ToString());
                            }
                            Console.WriteLine("---------------------------------------------------------");
                        }

                        double[][] input;
                        double[][] output;
                        GetTrainingSet(maze, triplets, out input, out output);

                        //FOR AUTOASSOCIATION
                        //double[][] io;
                        //GetTrainingSet(maze, triplets, out io);

                        //---------------------------------------------  CREATE NETWORK ---------------------------------------------
                        //Create the network & train
                        //var function = new BipolarSigmoidFunction();
                        var function = new SigmoidFunction(2.0);
                        ActivationNetwork goalNetwork = goalNetwork = new ActivationNetwork(function, 2 * maze.StatesCount, 20, maze.StatesCount);
                        ParallelResilientBackpropagationLearning goalTeacher = new ParallelResilientBackpropagationLearning(goalNetwork);
                        //BackPropagationLearning goalTeacher = new BackPropagationLearning(goalNetwork);

                        int    epoch               = 0;
                        double stopError           = 0.1;
                        int    resets              = 0;
                        double minimumErrorReached = double.PositiveInfinity;
                        while (minimumErrorReached > stopError && resets < 5)
                        {
                            goalNetwork.Randomize();
                            goalTeacher.Reset(0.0125);

                            double error = double.PositiveInfinity;
                            for (epoch = 0; epoch < 500 && error > stopError; epoch++)
                            {
                                error = goalTeacher.RunEpoch(input, output);
                                //Console.WriteLine("Epoch " + epoch + " = \t" + error);

                                if (error < minimumErrorReached)
                                {
                                    minimumErrorReached = error;
                                    goalNetwork.Save("goalNetwork.mlp");
                                }
                            }

                            //Console.Write("Reset (" + error+")->");
                            Console.Write(".(" + error.ToString("N2") + ") ");
                            resets++;
                        }
                        Console.WriteLine();
                        //Console.WriteLine("Best error obtained =" + minimumErrorReached);

                        goalNetwork = ActivationNetwork.Load("goalNetwork.mlp") as ActivationNetwork;

                        if (VERBOSITY > 0)
                        {
                            GenerateReport(maze, triplets, goalNetwork);
                        }

                        //---------------------------------------------  TEST ---------------------------------------------

                        //Console.WriteLine("Finding paths...");
                        double score, lengthScore;
                        int    totalElements;
                        double[,] pathMatrix;
                        ComputePathMatrix(maze, goalNetwork, out score, out lengthScore, out pathMatrix, trainSetName, mazeType);

                        //totalElements = maze.StatesCount * maze.StatesCount - maze.StatesCount;
                        //Console.WriteLine("Success over whole input space = " + score.ToString("N2") + "% and lengthScore=" + lengthScore.ToString("N2") + " over " + totalElements + "elements");
                        //logFile.WriteLine(mazeType + "," + trainSetName + "," + triplets.Count + "," + "whole-input-space" + "," + score + "," + lengthScore + "," + minimumErrorReached + "," + totalElements);

                        List <Triplet> setToEvaluate = triplets;
                        EvaluateSpecificSet(maze, pathMatrix, setToEvaluate, out score, out lengthScore, out totalElements);
                        Console.WriteLine("Success percentage over training set = " + score.ToString("N2") + "% and lengthScore=" + lengthScore.ToString("N2") + " over " + totalElements + "elements");
                        logFile.WriteLine(mazeType + "," + trainSetName + "," + triplets.Count + "," + "training-set" + "," + score + "," + lengthScore + "," + minimumErrorReached + "," + totalElements);

                        EvaluateWithoutSpecificSet(maze, pathMatrix, setToEvaluate, out score, out lengthScore, out totalElements);
                        Console.WriteLine("Success percentage over generalization set = " + score.ToString("N2") + "% and lengthScore=" + lengthScore.ToString("N2") + " over " + totalElements + "elements");
                        logFile.WriteLine(mazeType + "," + trainSetName + "," + triplets.Count + "," + "generalization-set" + "," + score + "," + lengthScore + "," + minimumErrorReached + "," + totalElements);

                        //setToEvaluate = GenerateTestSet_1LengthPath(maze);
                        //EvaluateSpecificSet(maze, pathMatrix, setToEvaluate, out score, out lengthScore, out totalElements);
                        //Console.WriteLine("Success percentage over 1-length set = " + score.ToString("N2") + "% and lengthScore=" + lengthScore.ToString("N2") + " over " + totalElements + "elements");
                        //logFile.WriteLine(mazeType + "," + trainSetName + "," + triplets.Count + "," + "length-1-sequences" + "," + score + "," + lengthScore + "," + minimumErrorReached + "," + totalElements);

                        logFile.Flush();
                        //Console.WriteLine("Finding paths, over.");
                        //Console.ReadKey();
                    }
                }
            }
            logFile.Close();
            Console.ReadKey();
        }
コード例 #23
0
        public void MulticlassTest1()
        {
            Accord.Math.Tools.SetupGenerator(0);

            // Suppose we would like to teach a network to recognize
            // the following input vectors into 3 possible classes:
            //
            double[][] inputs =
            {
                new double[] { 0, 1, 1, 0 }, // 0
                new double[] { 0, 1, 0, 0 }, // 0
                new double[] { 0, 0, 1, 0 }, // 0
                new double[] { 0, 1, 1, 0 }, // 0
                new double[] { 0, 1, 0, 0 }, // 0
                new double[] { 1, 0, 0, 0 }, // 1
                new double[] { 1, 0, 0, 0 }, // 1
                new double[] { 1, 0, 0, 1 }, // 1
                new double[] { 0, 0, 0, 1 }, // 1
                new double[] { 0, 0, 0, 1 }, // 1
                new double[] { 1, 1, 1, 1 }, // 2
                new double[] { 1, 0, 1, 1 }, // 2
                new double[] { 1, 1, 0, 1 }, // 2
                new double[] { 0, 1, 1, 1 }, // 2
                new double[] { 1, 1, 1, 1 }, // 2
            };

            int[] classes =
            {
                0, 0, 0, 0, 0,
                1, 1, 1, 1, 1,
                2, 2, 2, 2, 2,
            };

            // First we have to convert this problem into a way that  the neural
            // network can handle. The first step is to expand the classes into
            // indicator vectors, where a 1 into a position signifies that this
            // position indicates the class the sample belongs to.
            //
            double[][] outputs = Statistics.Tools.Expand(classes, -1, +1);

            // Create an activation function for the net
            var function = new BipolarSigmoidFunction();

            // Create an activation network with the function and
            //  4 inputs, 5 hidden neurons and 3 possible outputs:
            var network = new ActivationNetwork(function, 4, 5, 3);

            // Randomly initialize the network
            new NguyenWidrow(network).Randomize();

            // Teach the network using parallel Rprop:
            var teacher = new ParallelResilientBackpropagationLearning(network);

            double error = 1.0;

            while (error > 1e-5)
            {
                error = teacher.RunEpoch(inputs, outputs);
            }


            // Checks if the network has learned
            for (int i = 0; i < inputs.Length; i++)
            {
                double[] answer = network.Compute(inputs[i]);

                int expected = classes[i];
                int actual; answer.Max(out actual);

                Assert.AreEqual(expected, actual, 0.01);
            }
        }
コード例 #24
0
        //開始學習
        public bool Run()
        {
            bool IsDone = false;

            try
            {
                FlowDatas db = new FlowDatas();
                (double[][] Inputs, double[][] Outputs)
                    = DeepLearningTools.FlowSampleToLearningData(db.FlowSampleStatistics.Where(c => c.BehaviorNumber != 0).ToArray());
                db.Dispose();
                //產生DBN網路
                DBNetwork = new DeepBeliefNetwork(Inputs.First().Length,
                                                  (int)((Inputs.First().Length + Outputs.First().Length) / 1.5),
                                                  (int)((Inputs.First().Length + Outputs.First().Length) / 2),
                                                  Outputs.First().Length);
                //亂數打亂整個網路參數
                new GaussianWeights(DBNetwork, 0.1).Randomize();
                DBNetwork.UpdateVisibleWeights();
                //設定無監督學習組態
                DeepBeliefNetworkLearning teacher
                    = new DeepBeliefNetworkLearning(DBNetwork)
                    {
                    Algorithm = (h, v, i) =>
                                new ContrastiveDivergenceLearning(h, v)
                    {
                        LearningRate = 0.01,
                        Momentum     = 0.5,
                        Decay        = 0.001,
                    }
                    };

                //設置批量輸入學習。
                int batchCount1 = Math.Max(1, Inputs.Length / 10);
                //創建小批量加速學習。
                int[] groups1
                    = Accord.Statistics.Classes.Random(Inputs.Length, batchCount1);
                double[][][] batches = Inputs.Subgroups(groups1);
                //學習指定圖層的數據。
                double[][][] layerData;
                //運行無監督學習。
                for (int layerIndex = 0; layerIndex < DBNetwork.Machines.Count - 1; layerIndex++)
                {
                    teacher.LayerIndex = layerIndex;
                    layerData          = teacher.GetLayerInput(batches);
                    for (int i = 0; i < 200; i++)
                    {
                        double error = teacher.RunEpoch(layerData) / Inputs.Length;
                        if (i % 10 == 0)
                        {
                            Console.WriteLine(i + ", Error = " + error);
                        }
                    }
                }

                //對整個網絡進行監督學習,提供輸出分類。
                var teacher2 = new ParallelResilientBackpropagationLearning(DBNetwork);

                double error1 = double.MaxValue;

                //運行監督學習。
                for (int i = 0; i < 500; i++)
                {
                    error1 = teacher2.RunEpoch(Inputs, Outputs) / Inputs.Length;
                    Console.WriteLine(i + ", Error = " + error1);

                    DBNetwork.Save(Path);
                    Console.WriteLine("Save Done");
                }

                DBNetwork.Save(Path);
                Console.WriteLine("Save Done");

                IsDone = true;
            }
            catch (Exception ex)
            {
                Debug.Write(ex.ToString());
            }

            return(IsDone);
        }
コード例 #25
0
        /// <summary>
        /// The main application entry point.
        /// </summary>
        /// <param name="args">Command line arguments.</param>
        public static void Main(string[] args)
        {
            // get data
            Console.WriteLine("Loading data....");
            var path    = Path.GetFullPath(Path.Combine(AppDomain.CurrentDomain.BaseDirectory, @"..\..\..\..\california_housing.csv"));
            var housing = Frame.ReadCsv(path, separators: ",");

            housing = housing.Where(kv => ((decimal)kv.Value["median_house_value"]) < 500000);

            // shuffle the frame
            var rnd     = new Random();
            var indices = Enumerable.Range(0, housing.Rows.KeyCount).OrderBy(v => rnd.NextDouble());

            housing = housing.IndexRowsWith(indices).SortRowsByKey();

            // convert the house value range to thousands
            housing["median_house_value"] /= 1000;

            // create training, validation, and test partitions
            var training   = housing.Rows[Enumerable.Range(0, 12000)];
            var validation = housing.Rows[Enumerable.Range(12000, 2500)];
            var test       = housing.Rows[Enumerable.Range(14500, 2500)];

            // set up model columns
            var columns = new string[] {
                "latitude",
                "longitude",
                "housing_median_age",
                "total_rooms",
                "total_bedrooms",
                "population",
                "households",
                "median_income"
            };

            // build a neural network
            var network = new ActivationNetwork(
                new RectifiedLinearFunction(),  // ReLU activation
                8,                              // number of input features
                8,                              // hidden layer with 8 nodes
                1);                             // output layer with 1 node

            // set up a backpropagation learner
            var learner = new ParallelResilientBackpropagationLearning(network);

            // prep training feature and label arrays
            var features = training.Columns[columns].ToArray2D <double>().ToJagged();
            var labels   = (from v in training["median_house_value"].Values
                            select new double[] { v }).ToArray();

            // prep validation feature and label arrays
            var features_v = validation.Columns[columns].ToArray2D <double>().ToJagged();
            var labels_v   = (from v in validation["median_house_value"].Values
                              select new double[] { v }).ToArray();

            // randomize the network
            new GaussianWeights(network, 0.1).Randomize();

            // train the neural network
            var errors   = new List <double>();
            var errors_v = new List <double>();

            for (var epoch = 0; epoch < 100; epoch++)
            {
                learner.RunEpoch(features, labels);
                var rmse   = Math.Sqrt(learner.ComputeError(features, labels) / labels.GetLength(0));
                var rmse_v = Math.Sqrt(learner.ComputeError(features_v, labels_v) / labels_v.GetLength(0));
                errors.Add(rmse);
                errors_v.Add(rmse_v);
                Console.WriteLine($"Epoch: {epoch}, Training RMSE: {rmse}, Validation RMSE: {rmse_v}");
            }

            // plot the training curve
            Plot(errors, "Training", "Epoch", "RMSE");

            // plot the training and validation curves
            Plot(errors, errors_v, "Training and validation", "Epoch", "RMSE");

            Console.ReadLine();
        }
コード例 #26
0
        private static void NeuralNetworkLearningSingleAttributes(LearningData learningData)
        {
            var stopWatch = new Stopwatch();

            stopWatch.Start();

            var testMatcher     = new LoggingNeuralNetworkMatcher(learningData.TestData);
            var trainingMatcher = new LoggingNeuralNetworkMatcher(learningData.TrainingData);

            Parallel.ForEach(learningData.ActualMetadata.Keys, metadataKey =>
            {
                var metadata = new Dictionary <string, IndexableAttributeMetadata> {
                    { metadataKey, learningData.ActualMetadata[metadataKey] }
                };
                var trainingInputs  = learningData.TrainingData.Select(data => data.ToVectorArray(metadata)).ToArray();
                var trainingOutputs = learningData.TrainingData.Select(data => new[] { data.PercentMatch }).ToArray();
                var testInputs      = learningData.TestData.Select(data => data.ToVectorArray(metadata)).ToArray();
                var testOutputs     = learningData.TestData.Select(data => new[] { data.PercentMatch }).ToArray();

                if (testInputs.Length != testOutputs.Length || trainingInputs.Length != trainingOutputs.Length)
                {
                    throw new ArgumentException("Inputs and outputs data are not the same size");
                }
                var vectorSize = trainingInputs.First().Length;
                if (trainingInputs.Any(input => input.Length != vectorSize))
                {
                    throw new ArgumentException("Not all trainingInputs have the same vector size");
                }
                if (testInputs.Any(input => input.Length != vectorSize))
                {
                    throw new ArgumentException("Not test inputs have the correct vector size");
                }

                var results = new List <Tuple <int[], double, double> >();

                Parallel.For(0, 16, i =>
                {
                    var parameters = new[] { i, 1 };

                    var network =
                        new ActivationNetwork(new BipolarSigmoidFunction(), trainingInputs[0].Length,
                                              parameters); //new DeepBeliefNetwork();
                    var teacher = new ParallelResilientBackpropagationLearning(network);
                    var random  = new Random();

                    var error     = double.MaxValue;
                    var iteration = 0;
                    while (error > 0.0005 && iteration < 200)
                    {
                        iteration++;
                        //for (var i = 0; i < 10; i++)
                        {
                            //*
                            var pair = random.Next(0, trainingInputs.Length - 1);
                            error    = teacher.Run(trainingInputs[pair], trainingOutputs[pair]);
                            //*/

                            /*
                             * error = teacher.RunEpoch(trainingInputs, trainingOutputs);
                             * //*/
                            var accuracyRecallPrecision = trainingMatcher.MatchCount(network, metadata, new List <string>());
                            error = 3 - accuracyRecallPrecision.Item1 - accuracyRecallPrecision.Item2 - accuracyRecallPrecision.Item3;
                        }

                        if (iteration % 100 == 0)
                        {
                            Logger.DebugFormat("NeuralNetwork: Iteration {0} Error {1}", iteration, error);
                        }
                    }

                    var inSampleError    = teacher.ComputeError(trainingInputs, trainingOutputs);
                    var outOfSampleError = teacher.ComputeError(testInputs, testOutputs);
                    lock (results)
                    {
                        results.Add(new Tuple <int[], double, double>(parameters, inSampleError, outOfSampleError));
                    }
                    testMatcher.LogMatchCount(string.Format("{0} ({1})", metadataKey, learningData.ActualMetadata[metadataKey].Attribute.GetType().FullName), network,
                                              metadata, new List <string>());
                });

                Logger.InfoFormat("Results for {1} ({2}):\n{0}",
                                  string.Join(", ", results.Select(result => $"{string.Join("-", result.Item1)}: In: {result.Item2} Out: {result.Item3}")), metadataKey,
                                  learningData.ActualMetadata[metadataKey].Attribute.GetType().FullName);
            });

            stopWatch.Stop();
            Logger.InfoFormat("Neural Network learning (single attribute) took {0}", stopWatch.Elapsed);
        }
コード例 #27
0
ファイル: XorProblem.cs プロジェクト: haf/Accord.Net
        // Worker thread
        void SearchSolution()
        {
            // initialize input and output values
            double[][] input  = null;
            double[][] output = null;

            if (sigmoidType == 0)
            {
                // unipolar data
                input = new double[4][] {
                    new double[] { 0, 0 },
                    new double[] { 0, 1 },
                    new double[] { 1, 0 },
                    new double[] { 1, 1 }
                };
                output = new double[4][] {
                    new double[] { 0 },
                    new double[] { 1 },
                    new double[] { 1 },
                    new double[] { 0 }
                };
            }
            else
            {
                // bipolar data
                input = new double[4][] {
                    new double[] { -1, -1 },
                    new double[] { -1, 1 },
                    new double[] { 1, -1 },
                    new double[] { 1, 1 }
                };
                output = new double[4][] {
                    new double[] { -1 },
                    new double[] { 1 },
                    new double[] { 1 },
                    new double[] { -1 }
                };
            }

            // create neural network
            ActivationNetwork network = new ActivationNetwork(
                (sigmoidType == 0) ?
                (IActivationFunction) new SigmoidFunction(sigmoidAlphaValue) :
                (IActivationFunction) new BipolarSigmoidFunction(sigmoidAlphaValue),
                2, 2, 1);

            // create teacher
            var teacher = new ParallelResilientBackpropagationLearning(network);


            // set learning rate and momentum
            teacher.Reset(initialStep);


            // iterations
            int iteration = 0;

            // statistic files
            StreamWriter errorsFile = null;

            try
            {
                // check if we need to save statistics to files
                if (saveStatisticsToFiles)
                {
                    // open files
                    errorsFile = File.CreateText("errors.csv");
                }

                // erros list
                ArrayList errorsList = new ArrayList();

                // loop
                while (!needToStop)
                {
                    // run epoch of learning procedure
                    double error = teacher.RunEpoch(input, output);
                    errorsList.Add(error);

                    // save current error
                    if (errorsFile != null)
                    {
                        errorsFile.WriteLine(error);
                    }

                    // show current iteration & error
                    SetText(currentIterationBox, iteration.ToString());
                    SetText(currentErrorBox, error.ToString());
                    iteration++;

                    // check if we need to stop
                    if (error <= learningErrorLimit)
                    {
                        break;
                    }
                }

                // show error's dynamics
                double[,] errors = new double[errorsList.Count, 2];

                for (int i = 0, n = errorsList.Count; i < n; i++)
                {
                    errors[i, 0] = i;
                    errors[i, 1] = (double)errorsList[i];
                }

                errorChart.RangeX = new Range(0, errorsList.Count - 1);
                errorChart.UpdateDataSeries("error", errors);
            }
            catch (IOException)
            {
                MessageBox.Show("Failed writing file", "Error", MessageBoxButtons.OK, MessageBoxIcon.Error);
            }
            finally
            {
                // close files
                if (errorsFile != null)
                {
                    errorsFile.Close();
                }
            }

            // enable settings controls
            EnableControls(true);
        }
コード例 #28
0
        public void SearchSolution()
        {
            if (amostras_treinamento == null || !amostras_treinamento.Any())
            {
                MessageBox.Show("É necessário carregar os dados de treinamento!");
                return;
            }
            else
            {
                erros.Clear();
                double alfaSigmoide;
                double erro_desejado;
                int    numNeuronios;

                try
                {
                    alfaSigmoide = Math.Max(0.001, Math.Min(50, double.Parse(textBox12.Text)));
                }
                catch
                {
                    alfaSigmoide = 2;
                }

                try
                {
                    numNeuronios = Math.Max(1, Math.Min(1000, int.Parse(textBox13.Text)));
                }
                catch
                {
                    numNeuronios = 5;
                }

                try
                {
                    erro_desejado = Math.Max(0, Math.Min(100, double.Parse(textBox18.Text)));
                }
                catch
                {
                    erro_desejado = 1;
                }

                SetText(textBox12, alfaSigmoide.ToString());
                SetText(textBox13, numNeuronios.ToString());
                SetText(textBox18, erro_desejado.ToString());

                RNA = new ActivationNetwork(new BipolarSigmoidFunction(alfaSigmoide), 9, numNeuronios, 1);

                new NguyenWidrow(RNA).Randomize();

                var teacher = new ParallelResilientBackpropagationLearning(RNA);


                double error = double.PositiveInfinity;
                double previous;

                double[][] input  = new double[amostras_treinamento.Count][];
                double[][] output = new double[amostras_treinamento.Count][];

                int i = 0;

                foreach (Amostra_Paciente amostra in amostras_treinamento)
                {
                    double[] temp = new double[] { amostra.label };

                    input[i]  = amostra.arrayDados;
                    output[i] = temp;
                    i++;
                }
                int iter = 0;
                do
                {
                    previous = error;
                    error    = teacher.RunEpoch(input, output);
                    SetText(textBox15, error.ToString());
                    SetText(textBox14, iter.ToString());
                    iter++;
                }while (error > erro_desejado);

                erros.Clear();
                string erro_string = "Resultados Treinamento\r\n";
                i = 0;

                foreach (Amostra_Paciente amostra in amostras_treinamento)
                {
                    double[] resultado = RNA.Compute(amostra.arrayDados);
                    if (resultado[0] > 1)
                    {
                        resultado[0] = 1;
                    }
                    else if (resultado[0] < 0)
                    {
                        resultado[0] = 0;
                    }

                    double erro = Math.Abs(amostra.label - resultado[0]);
                    erros.Add(erro);
                    i++;
                }
                erro_string += "Taxa de acerto: " + ((1 - erros.Average()) * 100);
                MessageBox.Show(erro_string);
            }
        }
        // Worker thread
        void SearchSolution()
        {
            // number of learning samples
            int samples = data.GetLength(0);

            // prepare learning data
            DoubleRange unit = new DoubleRange(-1, 1);

            double[][] input  = data.GetColumn(0).Scale(fromRange: xRange, toRange: unit).ToJagged();
            double[][] output = data.GetColumn(1).Scale(fromRange: yRange, toRange: unit).ToJagged();


            // create multi-layer neural network
            ActivationNetwork network = new ActivationNetwork(
                new BipolarSigmoidFunction(sigmoidAlphaValue),
                1, neuronsInFirstLayer, 1);

            if (useNguyenWidrow)
            {
                new NguyenWidrow(network).Randomize();
            }

            // create teacher
            var teacher = new ParallelResilientBackpropagationLearning(network);

            // iterations
            int iteration = 1;

            // solution array
            double[,] solution = new double[samples, 2];


            // loop
            while (!needToStop)
            {
                // run epoch of learning procedure
                double error = teacher.RunEpoch(input, output) / samples;

                // calculate solution
                for (int j = 0; j < samples; j++)
                {
                    double x = input[j][0];
                    double y = network.Compute(new[] { x })[0];
                    solution[j, 0] = x.Scale(fromRange: unit, toRange: xRange);
                    solution[j, 1] = y.Scale(fromRange: unit, toRange: yRange);
                }

                chart.UpdateDataSeries("solution", solution);

                // calculate error
                double learningError = 0.0;
                for (int j = 0; j < samples; j++)
                {
                    double x        = input[j][0];
                    double expected = data[j, 1];
                    double actual   = network.Compute(new[] { x })[0];
                    learningError += Math.Abs(expected - actual);
                }

                // set current iteration's info
                SetText(currentIterationBox, iteration.ToString());
                SetText(currentErrorBox, learningError.ToString("F3"));

                // increase current iteration
                iteration++;

                // check if we need to stop
                if ((iterations != 0) && (iteration > iterations))
                {
                    break;
                }
            }


            // enable settings controls
            EnableControls(true);
        }
コード例 #30
0
        private bool Train(dynamic bow, SceneFeatureData scenefeatureData)
        {
            Bitmap mask = Utils.CreateMaskBitmap(new Size(1280, 720), new Rectangle[] { scenefeatureData.feature.area });

            mask.Save(scenefeatureData.feature.name + "-mask.png");
            var trainData = scenefeatureData.trainData;

            int[]      labelIndexs = trainData.GetLabelIndexs();
            String[]   labels      = trainData.GetLabels();
            double[][] features    = trainData.GetFeature(bow, mask);
            int        numOutput   = trainData.GetNumOutput();
            var        function    = new SigmoidFunction();
            bool       flgFound    = false;
            int        count       = 0;

            while ((flgFound == false) && (count < 100))
            {
                count++;
                var network = new ActivationNetwork(function, bow.NumberOfOutputs, 20, numOutput);
                new NguyenWidrow(network).Randomize();
                var teacher = new ParallelResilientBackpropagationLearning(network);

                BowImageClassifier trainImgClassifier = new BowImageClassifier();
                trainImgClassifier.Init(bow, network, mask);
                //creat output
                double[][] outputs    = trainData.GetOutputs(numOutput);
                double     avgError   = 10000.0;
                double     prevError  = avgError;
                double     bestError  = avgError;
                int        errorCount = 0;
                while ((errorCount < 3) && (avgError > 0.00001))
                {
                    //Application.DoEvents();
                    double[] errors = new double[10];
                    for (int i = 0; i < 10; i++)
                    {
                        errors[i] = teacher.RunEpoch(features, outputs);
                    }
                    avgError = errors.Average();
                    if (prevError > avgError)
                    {
                        int trainError = trainImgClassifier.Evaluate(trainData);
                        //int testError = trainImgClassifier.Evaluate(testData);
                        //int testSetError = trainImgClassifier.Evaluate(testDataSet);
                        logger.logStr(String.Format("{0} {1} {2}", avgError, prevError, trainError));
                        prevError = avgError;
                        //save best error
                        if (bestError > avgError)
                        {
                            bestError = avgError;
                            //Accord.IO.Serializer.Save(network, dataPath + String.Format(@"\train-{0}.net", bow.NumberOfOutputs));
                        }
                        if (trainError /*+ testError + testSetError*/ == 0)
                        {
                            Accord.IO.Serializer.Save(network, path + @"\" + scenefeatureData.feature.name + String.Format(@"\train-{0}.net", bow.NumberOfOutputs));
                            logger.logStr("Done " + bestError + " " + trainError);
                            return(true);
                        }
                    }
                    else
                    {
                        logger.logStr(String.Format("{0}", avgError));
                        prevError = 10000.0;
                        errorCount++;
                    }
                    //Application.DoEvents();
                }
                logger.logStr("Done " + bestError + " " + count);
            }
            return(false);
        }