static void ProcessData(MLContext context, IDataView data) { var houses = context.Data.CreateEnumerable <HouseBlockData>(data, reuseRowObject: false).ToArray(); // plot median house value by longitude var pl = new PLStream(); pl.sdev("pngcairo"); // png rendering pl.sfnam("data.png"); // output filename pl.spal0("cmap0_alternate.pal"); // alternate color palette pl.init(); pl.env( 0, 10, // x-axis range 0, 600000, // y-axis range AxesScale.Independent, // scale x and y independently AxisBox.BoxTicksLabelsAxes); // draw box, ticks, and num ticks pl.lab( "Median Income", // x-axis label "Median House Value", // y-axis label "House value by longitude"); // plot title pl.sym( houses.Select(h => (double)h.MedianIncome).ToArray(), houses.Select(h => (double)h.MedianHouseValue).ToArray(), (char)218 ); pl.eop(); }
static void PlotData(MLContext context, IDataView data) { var transactions = context.Data.CreateEnumerable <CreditCardData>(data, reuseRowObject: false).ToArray(); // plot median house value by longitude var pl = new PLStream(); pl.sdev("pngcairo"); // png rendering pl.sfnam("data.png"); // output filename pl.spal0("cmap0_alternate.pal"); // alternate color palette pl.init(); pl.env( 0, 5000, // x-axis range 0, 2500, // y-axis range AxesScale.Independent, // scale x and y independently AxisBox.BoxTicksLabelsAxes); // draw box, ticks, and num ticks pl.lab( "Time", // x-axis label "Amount", // y-axis label "Transactions by Time"); // plot title pl.sym( transactions.Select(txn => (double)txn.Time).ToArray(), transactions.Select(txn => (double)txn.Amount).ToArray(), (char)218 ); pl.eop(); }
private static void demo2(PLStream pl) { pl.bop(); pl.ssub(10, 10); fillColor(pl, out int[] r, out int[] g, out int[] b); pl.scmap0(r, g, b); draw_gridmap(pl, 100, 16); pl.eop(); }
private static void PlotToFile(string fileName, Action <PLStream> action) { using (var pl = new PLStream()) { pl.sdev("pngcairo"); pl.sfnam(fileName); pl.spal0("cmap0_alternate.pal"); pl.init(); action(pl); pl.eop(); } }
private static void demo1(PLStream pl) { pl.bop(); int nx = 4; int ny = 4; { pl.ssub(nx, ny); draw_gridmap(pl, nx * ny, 0); } pl.eop(); }
private void Graph(string[] args, double[] x1, double[] y1, double[] x2, double[] y2, double[] x3, double[] y3) { string chartFileName = string.Empty; var pl = new PLStream(); if (args.Length == 1 && args[0] == "svg") { chartFileName = @"Logistic.svg"; pl.sdev("svg"); pl.sfnam("Logistic.svg"); } else { chartFileName = @"Logistic.png"; pl.sdev("pngcairo"); pl.sfnam("Logistic.png"); } pl.spal0("cmap0_alternate.pal"); pl.init(); const int xMin = -4; const int xMax = 4; const int yMin = -5; const int yMax = 20; pl.env(xMin, xMax, yMin, yMax, AxesScale.Independent, AxisBox.BoxTicksLabels); // Set scaling for mail title text 125% size of default pl.lab("X1", "X2", "Title"); pl.col0(3); pl.sym(x1, y1, (char)228); pl.col0(9); pl.sym(x2, y2, (char)228); pl.col0(2); pl.line(x3, y3); pl.eop(); pl.gver(out var verText); var p = new Process(); string chartFileNamePath = @".\" + chartFileName; p.StartInfo = new ProcessStartInfo(chartFileNamePath) { UseShellExecute = true }; p.Start(); }
private static void exportdata(List <double> states, string name, string unit, bool Exportimage = false, List <int> second = null) { System.Text.StringBuilder sb = new System.Text.StringBuilder(); sb.AppendLine($"x"); foreach (var item in states) { sb.AppendLine(item.ToString()); } Directory.CreateDirectory(System.IO.Path.Combine("/D/", "acc")); Directory.CreateDirectory(System.IO.Path.Combine("/D/", "acc_export")); System.IO.File.WriteAllText( System.IO.Path.Combine("/D/", "acc", $"linacc.csv"), sb.ToString()); if (Exportimage) { var test = states.Min(x => x); var pl = new PLStream(); pl.sdev("pngcairo"); // png rendering pl.sfnam($"{name}.png"); // output filename pl.spal0("cmap0_alternate.pal"); // alternate color palette pl.init(); pl.env( 0, states.Count, // x-axis range states.Min(x => x), states.Max(x => x), // y-axis range AxesScale.Independent, // scale x and y independently AxisBox.BoxTicksLabelsAxes); // draw box, ticks, and num ticks pl.lab( "Sample", // x-axis label unit, // y-axis label name); // plot title pl.line( (from x in Enumerable.Range(0, states.Count()) select(double) x).ToArray(), (from p in states select(double) p).ToArray() ); if (second != null) { pl.col0(4); var Roots = GetListFromIndices(second, states); pl.poin( (from x in second select(double) x).ToArray(), (from p in Roots select(double) p).ToArray(), '!' ); } string csv = String.Join(",", states.Select(x => x.ToString()).ToArray()); pl.eop(); } }
private static void Graph(string[] args, double[] x, double[] y) { string chartFileName = string.Empty; var pl = new PLStream(); if (args.Length == 1 && args[0] == "svg") { chartFileName = @"KNN.svg"; pl.sdev("svg"); pl.sfnam("KNN.svg"); } else { chartFileName = @"KNN.png"; pl.sdev("pngcairo"); pl.sfnam("KNN.png"); } pl.spal0("cmap0_alternate.pal"); pl.init(); const int xMin = 0; const int xMax = 1; const int yMin = 0; const int yMax = 1; pl.env(xMin, xMax, yMin, yMax, AxesScale.Independent, AxisBox.BoxTicksLabelsAxes); pl.schr(0, 0.75); pl.lab("X-axis", "Y-axis", "Title"); pl.col0(3); pl.sym(x, y, (char)210); pl.eop(); pl.gver(out var verText); var p = new Process(); string chartFileNamePath = @".\" + chartFileName; p.StartInfo = new ProcessStartInfo(chartFileNamePath) { UseShellExecute = true }; p.Start(); }
private static void DrawPlot(IList <DayInfo> days, IList <DayInfo> anomalies) { days = days.Where(x => x.Date >= new DateTime(2017, 9, 1) && x.Date <= new DateTime(2017, 9, 30)).ToList(); anomalies = anomalies.Where(x => x.Date >= new DateTime(2017, 9, 1) && x.Date <= new DateTime(2017, 9, 30)).ToList(); using (var plot = new PLStream()) { plot.sdev("pngcairo"); // png rendering plot.sfnam("data.png"); // output filename plot.spal0("cmap0_alternate.pal"); // alternate color palette plot.init(); plot.env( 1, // x-axis range days.Count, 0, // y-axis range 150, AxesScale.Independent, // scale x and y independently AxisBox.BoxTicksLabelsAxes); // draw box, ticks, and num ticks plot.lab( "Date", // x-axis label "Count", // y-axis label "Press releases September 2017"); // plot title plot.line( (from x in Enumerable.Range(1, days.Count) select(double) x).ToArray(), (from p in days select(double) p.Count).ToArray()); // plot the spikes plot.col0(2); // blue color plot.schr(3, 3); // scale characters plot.string2( (from s in anomalies select(double) days.ToList().FindIndex(x => x.Date == s.Date) + 1).ToArray(), (from s in anomalies select(double) s.Count + 15).ToArray(), "↓"); plot.eop(); } }
public static void PlotRegressionChart(MLContext mlContext, string testDataSetPath, string simulationPath) { ITransformer trainedModel; using (var stream = new FileStream(simulationPath, FileMode.Open, FileAccess.Read, FileShare.Read)) { trainedModel = mlContext.Model.Load(stream, out var modelInputSchema); } // Create prediction engine related to the loaded trained model var predFunction = mlContext.Model.CreatePredictionEngine <ExecutionModel, ExecutionModelPrediction>(trainedModel); string chartFileName; using (var pl = new PLStream()) { pl.sdev("pngcairo"); chartFileName = "RegressionDistribution.png"; pl.sfnam(chartFileName); // use white background with black foreground pl.spal0("cmap0_alternate.pal"); // Initialize plplot pl.init(); //var totalNumber = numberOfRecordsToRead; var testData = new CsvReader().GetDataFromCsv(testDataSetPath).ToList(); var totalNumber = testData.Count; var(xMinLimit, xMaxLimit) = GetMinMax(testData); // set axis limits pl.env(xMinLimit, xMaxLimit, xMinLimit, xMaxLimit, AxesScale.Independent, AxisBox.BoxTicksLabelsAxes); // Set scaling for mail title text 125% size of default pl.schr(0, 1.25); // The main title pl.lab("Measured", "Predicted", "Distribution of TotalTime Prediction"); // plot using different colors // see http://plplot.sourceforge.net/examples.php?demo=02 for palette indices pl.col0(1); //This code is the symbol to paint const char code = (char)9; // plot using other color //pl.col0(9); //Light Green //pl.col0(4); //Red pl.col0(2); //Blue double yTotal = 0; double xTotal = 0; double xyMultiTotal = 0; double xSquareTotal = 0; foreach (var t in testData) { var x = new double[1]; var y = new double[1]; //Make Prediction var prediction = predFunction.Predict(t); x[0] = t.TotalTime; y[0] = prediction.TotalTime; //Paint a dot pl.poin(x, y, code); xTotal += x[0]; yTotal += y[0]; var multi = x[0] * y[0]; xyMultiTotal += multi; var xSquare = x[0] * x[0]; xSquareTotal += xSquare; //Console.WriteLine($"-------------------------------------------------"); //Console.WriteLine($"Predicted : {prediction.TotalTime}"); //Console.WriteLine($"Actual: {testData[i].TotalTime}"); //Console.WriteLine($"-------------------------------------------------"); } var minY = yTotal / totalNumber; var minX = xTotal / totalNumber; var minXy = xyMultiTotal / totalNumber; var minXsquare = xSquareTotal / totalNumber; var m = ((minX * minY) - minXy) / ((minX * minX) - minXsquare); var b = minY - (m * minX); //Generic function for Y for the regression line // y = (m * x) + b; const int x1 = 1; var y1 = (m * x1) + b; var x2 = xMaxLimit; //Function for Y2 in the line var y2 = (m * x2) + b; var xArray = new double[2]; var yArray = new double[2]; xArray[0] = x1; yArray[0] = y1; xArray[1] = x2; yArray[1] = y2; pl.col0(4); pl.line(xArray, yArray); // end page (writes output to disk) pl.eop(); // output version of PLplot pl.gver(out var verText); //Console.WriteLine("PLplot version " + verText); } // the pl object is disposed here // Open Chart File Console.WriteLine("Showing chart..."); var p = new Process(); var chartFileNamePath = @".\" + chartFileName; p.StartInfo = new ProcessStartInfo(chartFileNamePath) { UseShellExecute = true }; p.Start(); }
/// <summary> /// The main program entry point. /// </summary> /// <param name="args">The command line parameters.</param> static void Main() { // create the machine learning context var context = new MLContext(); // load the data file Console.WriteLine("Loading data..."); var dataView = context.Data.LoadFromTextFile <SalesRecord>(path: dataPath, hasHeader: true, separatorChar: ','); // get an array of data points var sales = context.Data.CreateEnumerable <SalesRecord>(dataView, reuseRowObject: false).ToArray(); // plot the data var pl = new PLStream(); pl.sdev("pngcairo"); // png rendering pl.sfnam("data.png"); // output filename pl.spal0("cmap0_alternate.pal"); // alternate color palette pl.init(); pl.env( 0, 36, // x-axis range 0, 800, // y-axis range AxesScale.Independent, // scale x and y independently AxisBox.BoxTicksLabelsAxes); // draw box, ticks, and num ticks pl.lab( "Date", // x-axis label "Sales", // y-axis label "Shampoo sales over time"); // plot title pl.line( (from x in Enumerable.Range(0, sales.Count()) select(double) x).ToArray(), (from p in sales select(double) p.Sales).ToArray() ); // build a training pipeline for detecting spikes var pipeline = context.Transforms.DetectIidSpike( outputColumnName: nameof(SalesPrediction.Prediction), inputColumnName: nameof(SalesRecord.Sales), confidence: 95, pvalueHistoryLength: sales.Count() / 4); // 25% of x-range // train the model Console.WriteLine("Detecting spikes..."); var model = pipeline.Fit(dataView); // predict spikes in the data var transformed = model.Transform(dataView); var predictions = context.Data.CreateEnumerable <SalesPrediction>(transformed, reuseRowObject: false).ToArray(); // find the spikes in the data var spikes = (from i in Enumerable.Range(0, predictions.Count()) where predictions[i].Prediction[0] == 1 select(Day: i, Sales: sales[i].Sales)); // plot the spikes pl.col0(2); // blue color pl.schr(3, 3); // scale characters pl.string2( (from s in spikes select(double) s.Day).ToArray(), (from s in spikes select(double) s.Sales + 40).ToArray(), "!"); // build a training pipeline for detecting change points var pipeline2 = context.Transforms.DetectIidChangePoint( outputColumnName: nameof(SalesPrediction.Prediction), inputColumnName: nameof(SalesRecord.Sales), confidence: 95, changeHistoryLength: sales.Count() / 4); // 25% of x-range // train the model Console.WriteLine("Detecting change points..."); var model2 = pipeline2.Fit(dataView); // get predictions transformed = model2.Transform(dataView); predictions = context.Data.CreateEnumerable <SalesPrediction>(transformed, reuseRowObject: false).ToArray(); // find the change points in the data var changes = (from i in Enumerable.Range(0, predictions.Count()) where predictions[i].Prediction[0] == 1 select(Day: i, Sales: sales[i].Sales)); // plot the change points as vertical red lines pl.col0(3); foreach (var c in changes) { pl.line(new double[] { c.Day, c.Day }, new double[] { 0, 800 }); } pl.eop(); Console.WriteLine("Saved output file: data.png"); }
private static void Main(string[] args) { // generate data for plotting const double sineFactor = 0.012585; const int exampleCount = 1000; var phaseOffset = 125; var x0 = new double[exampleCount]; var y0 = new double[exampleCount]; for (var j = 0; j < exampleCount; j++) { x0[j] = j; y0[j] = (double)(System.Math.Sin(sineFactor * (j + phaseOffset)) * 1); } var x1 = new double[exampleCount]; var y1 = new double[exampleCount]; phaseOffset = 250; for (var j = 0; j < exampleCount; j++) { x1[j] = j; y1[j] = (double)(System.Math.Sin(sineFactor * (j + phaseOffset)) * 1); } var x2 = new double[exampleCount]; var y2 = new double[exampleCount]; phaseOffset = 375; for (var j = 0; j < exampleCount; j++) { x2[j] = j; y2[j] = (double)(System.Math.Sin(sineFactor * (j + phaseOffset)) * 1); } var x3 = new double[exampleCount]; var y3 = new double[exampleCount]; phaseOffset = 500; for (var j = 0; j < exampleCount; j++) { x3[j] = j; y3[j] = (double)(System.Math.Sin(sineFactor * (j + phaseOffset)) * 1); } // create PLplot object var pl = new PLStream(); // use SVG backend and write to SineWaves.svg in current directory if (args.Length == 1 && args[0] == "svg") { pl.sdev("svg"); pl.sfnam("SineWaves.svg"); } else { pl.sdev("pngcairo"); pl.sfnam("SineWaves.png"); } // use white background with black foreground pl.spal0("cmap0_alternate.pal"); // Initialize plplot pl.init(); // set axis limits const int xMin = 0; const int xMax = 1000; const int yMin = -1; const int yMax = 1; pl.env(xMin, xMax, yMin, yMax, AxesScale.Independent, AxisBox.BoxTicksLabelsAxes); // Set scaling for mail title text 125% size of default pl.schr(0, 1.25); // The main title pl.lab("X", "Y", "PLplot demo of four sine waves"); // plot using different colors // see http://plplot.sourceforge.net/examples.php?demo=02 for palette indices pl.col0(9); pl.line(x0, y0); pl.col0(1); pl.line(x1, y1); pl.col0(2); pl.line(x2, y2); pl.col0(4); pl.line(x3, y3); // end page (writes output to disk) pl.eop(); // output version pl.gver(out var verText); Console.WriteLine("PLplot version " + verText); }
public static void PlotRegressionChart(PlotChartGeneratorModel generationModel) { using (var pl = new PLStream()) { pl.sdev("pngcairo"); pl.sfnam(generationModel.ImageName); // use white background with black foreground pl.spal0("cmap0_alternate.pal"); // Initialize plplot pl.init(); // set axis limits pl.env(generationModel.MinLimitX, generationModel.MaxLimitX, generationModel.MinLimitY, generationModel.MaxLimitY, AxesScale.Independent, AxisBox.CustomXYBoxTicksLabels); // Set scaling for mail title text 125% size of default //pl.schr(0, 1.25); // The main title pl.lab(generationModel.LabelX, generationModel.LabelY, generationModel.Title); // plot using different colors // see http://plplot.sourceforge.net/examples.php?demo=02 for palette indices pl.col0(1); // This code is the symbol to paint char code = (char)9; double yTotal = 0; double xTotal = 0; double xyMultiTotal = 0; double xSquareTotal = 0; var totalNumber = 0; generationModel.PointsList.ForEach(pointsList => { double y0 = 0; double x0 = 0; totalNumber += pointsList.Points.Count(); // plot using other color pl.col0(pointsList.Color); pointsList.Points.ForEach(point => { var x = new double[1]; var y = new double[1]; x[0] = point.X; y[0] = point.Y; if (pointsList.PaintDots) { // Paint a dot pl.poin(x, y, code); } else { if (!generationModel.DrawRegressionLine) { // Draw lines between points pl.join(x0, y0, point.X, point.Y); x0 = point.X; y0 = point.Y; } } xTotal += point.X; yTotal += point.Y; xyMultiTotal += point.X * point.Y; xSquareTotal += point.X * point.X; }); }); // Regression Line calculation explanation: // https://www.khanacademy.org/math/statistics-probability/describing-relationships-quantitative-data/more-on-regression/v/regression-line-example if (generationModel.DrawRegressionLine) { if (generationModel.RegressionPointsList != null) { var xArray = generationModel.RegressionPointsList.Points.Select(dp => dp.X).ToArray(); var yArray = generationModel.RegressionPointsList.Points.Select(dp => dp.Y).ToArray(); pl.col0(generationModel.RegressionPointsList.Color); pl.line(xArray, yArray); } else { double minY = yTotal / totalNumber; double minX = xTotal / totalNumber; double minXY = xyMultiTotal / totalNumber; double minXsquare = xSquareTotal / totalNumber; double m = ((minX * minY) - minXY) / ((minX * minX) - minXsquare); double b = minY - (m * minX); double x1 = generationModel.MinLimitX; //Function for Y1 in the line double y1 = (m * x1) + b; double x2 = generationModel.MaxLimitX; //Function for Y2 in the line double y2 = (m * x2) + b; var xArray = new double[2]; var yArray = new double[2]; xArray[0] = x1; yArray[0] = y1; xArray[1] = x2; yArray[1] = y2; pl.col0(4); pl.line(xArray, yArray); } } if (generationModel.DashedPoint != null) { pl.col0(CommonConstants.PPLplotColorGreen); pl.width(2); // Horizontal Line should go from (0,DashedPoint.Y) to (DashedPoint.X, DashedPoint.Y) DrawDashedLined(pl, 0, generationModel.DashedPoint.Y, generationModel.DashedPoint.X, generationModel.DashedPoint.Y); // Vertical Line should go from (DashedPoint.X,0) to (DashedPoint.X, DashedPoint.Y) DrawDashedLined(pl, generationModel.DashedPoint.X, 0, generationModel.DashedPoint.X, generationModel.DashedPoint.Y); } // end page (writes output to disk) pl.eop(); // output version of PLplot pl.gver(out var verText); } // the pl object is disposed here // Open Chart File In Microsoft Photos App (Or default app, like browser for .svg) Console.WriteLine("Showing chart..."); var p = new Process(); string chartFileNamePath = @".\" + generationModel.ImageName; p.StartInfo = new ProcessStartInfo(chartFileNamePath) { UseShellExecute = true }; p.Start(); }
public static void Main(string[] args) { Storage(); // generate data for plotting const double sineFactor = 0.012585; const int exampleCount = 1000; var phaseOffset = 125; var x0 = new double[exampleCount]; var y0 = new double[exampleCount]; for (var j = 0; j < exampleCount; j++) { x0[j] = j; y0[j] = (double)(System.Math.Sin(sineFactor * (j + phaseOffset)) * 1); } var x1 = new double[exampleCount]; var y1 = new double[exampleCount]; phaseOffset = 250; for (var j = 0; j < exampleCount; j++) { x1[j] = j; y1[j] = (double)(System.Math.Sin(sineFactor * (j + phaseOffset)) * 1); } var x2 = new double[exampleCount]; var y2 = new double[exampleCount]; phaseOffset = 375; for (var j = 0; j < exampleCount; j++) { x2[j] = j; y2[j] = (double)(System.Math.Sin(sineFactor * (j + phaseOffset)) * 1); } var x3 = new double[exampleCount]; var y3 = new double[exampleCount]; phaseOffset = 500; for (var j = 0; j < exampleCount; j++) { x3[j] = j; y3[j] = (double)(System.Math.Sin(sineFactor * (j + phaseOffset)) * 1); } // create PLplot object var pl = new PLStream(); // use SVG backend and write to SineWaves.svg in current directory if (args.Length == 1 && args[0] == "svg") { pl.sdev("svg"); pl.sfnam("SineWaves.svg"); } else { pl.sdev("pngcairo"); pl.sfnam("SineWaves.png"); } // use white background with black foreground pl.spal0("cmap0_alternate.pal"); // Initialize plplot pl.init(); // set axis limits const int xMin = 0; const int xMax = 1000; const int yMin = -1; const int yMax = 1; pl.env(xMin, xMax, yMin, yMax, AxesScale.Independent, AxisBox.BoxTicksLabelsAxes); // Set scaling for mail title text 125% size of default pl.schr(0, 1.25); // The main title pl.lab("X", "Y", "PLplot demo of four sine waves"); // plot using different colors // see http://plplot.sourceforge.net/examples.php?demo=02 for palette indices pl.col0(9); pl.line(x0, y0); pl.col0(1); pl.line(x1, y1); pl.col0(2); pl.line(x2, y2); pl.col0(4); pl.line(x3, y3); // end page (writes output to disk) pl.eop(); // output version pl.gver(out var verText); Console.WriteLine("PLplot version " + verText); ////////histogram///////////////////// double[] y00 = { 5.0, 15.0, 12.0, 24.0, 28.0, 30.0, 20.0, 8.0, 12.0, 3.0 }; double[] pos = { 0.0, 0.25, 0.5, 0.75, 1.0 }; double[] red = { 0.0, 0.25, 0.5, 1.0, 1.0 }; double[] green = { 1.0, 0.5, 0.5, 0.5, 1.0 }; double[] blue = { 1.0, 1.0, 0.5, 0.25, 0.0 }; PLStream pls = new PLStream(); pls.sdev("pngcairo"); pls.sfnam("Histogram.png"); pls.spal0("cmap0_alternate.pal"); pls.init(); pls.adv(0); pls.vsta(); pls.wind(1980.0, 1990.0, 0.0, 35.0); pls.box("bc", 1.0, 0, "bcnv", 10.0, 0); pls.col0(2); pls.lab("Year", "Widget Sales (millions)", "#frPLplot Example 12"); for (int i = 0; i < 10; i++) { // pls.col0(i + 1); pls.col1(i / 9.0); pls.psty(0); double[] x = new double[4]; double[] y = new double[4]; x[0] = 1980.0 + i; y[0] = 0.0; x[1] = 1980.0 + i; y[1] = y00[i]; x[2] = 1980.0 + i + 1.0; y[2] = y00[i]; x[3] = 1980.0 + i + 1.0; y[3] = 0.0; pls.fill(x, y); pls.col0(1); pls.lsty(LineStyle.Continuous); pls.line(x, y); // sprintf(string, "%.0f", y0[i]); String text = ((int)(y00[i] + 0.5)).ToString(); pls.ptex((1980.0 + i + .5), (y00[i] + 1.0), 1.0, 0.0, .5, text); // sprintf(string, "%d", 1980 + i); String text1 = (1980 + i).ToString(); pls.mtex("b", 1.0, ((i + 1) * .1 - .05), 0.5, text1); } pls.eop(); Console.ReadLine(); }
/// <summary> /// The main program entry point. /// </summary> /// <param name="args">The command line parameters.</param> static void Main() { // create the machine learning context var context = new MLContext(); // load the data file Console.WriteLine("Loading data..."); var dataView = context.Data.LoadFromTextFile <MeterData>(path: dataPath, hasHeader: true, separatorChar: ','); // get an array of data points var values = context.Data.CreateEnumerable <MeterData>(dataView, reuseRowObject: false).ToArray(); // plot the data var pl = new PLStream(); pl.sdev("pngcairo"); // png rendering pl.sfnam("data.png"); // output filename pl.spal0("cmap0_alternate.pal"); // alternate color palette pl.init(); pl.env( 0, 90, // x-axis range 0, 5000, // y-axis range AxesScale.Independent, // scale x and y independently AxisBox.BoxTicksLabelsAxes); // draw box, ticks, and num ticks pl.lab( "Day", // x-axis label "Power consumption", // y-axis label "Power consumption over time"); // plot title pl.line( (from x in Enumerable.Range(0, values.Count()) select(double) x).ToArray(), (from p in values select(double) p.Consumption).ToArray() ); // build a training pipeline for detecting spikes var pipeline = context.Transforms.SsaSpikeEstimator( nameof(SpikePrediction.Prediction), nameof(MeterData.Consumption), confidence: 98, pvalueHistoryLength: 30, trainingWindowSize: 90, seasonalityWindowSize: 30); // train the model Console.WriteLine("Detecting spikes..."); var model = pipeline.Fit(dataView); // predict spikes in the data var transformed = model.Transform(dataView); var predictions = context.Data.CreateEnumerable <SpikePrediction>(transformed, reuseRowObject: false).ToArray(); // find the spikes in the data var spikes = (from i in Enumerable.Range(0, predictions.Count()) where predictions[i].Prediction[0] == 1 select(Day: i, Consumption: values[i].Consumption)); // plot the spikes pl.col0(2); // blue color pl.schr(3, 3); // scale characters pl.string2( (from s in spikes select(double) s.Day).ToArray(), (from s in spikes select(double) s.Consumption + 200).ToArray(), "↓"); pl.eop(); }
/// <summary> /// The main program entry point. /// </summary> /// <param name="args">The command line arguments</param> static void Main(string[] args) { // create the machine learning context var context = new MLContext(); // load the dataset Console.WriteLine("Loading data..."); var data = context.Data.LoadFromTextFile <HouseBlockData>( path: dataPath, hasHeader: true, separatorChar: ','); // keep only records with a median house value < 500,000 data = context.Data.FilterRowsByColumn( data, "MedianHouseValue", upperBound: 499_999 ); // get an array of housing data var houses = context.Data.CreateEnumerable <HouseBlockData>(data, reuseRowObject: false).ToArray(); // plot median house value by longitude var pl = new PLStream(); pl.sdev("pngcairo"); // png rendering pl.sfnam("data.png"); // output filename pl.spal0("cmap0_alternate.pal"); // alternate color palette pl.init(); pl.env( 0, 10, // x-axis range 0, 600000, // y-axis range AxesScale.Independent, // scale x and y independently AxisBox.BoxTicksLabelsAxes); // draw box, ticks, and num ticks pl.lab( "Median Income", // x-axis label "Median House Value", // y-axis label "House value by longitude"); // plot title pl.sym( houses.Select(h => (double)h.MedianIncome).ToArray(), houses.Select(h => (double)h.MedianHouseValue).ToArray(), (char)218 ); pl.eop(); // build a data loading pipeline // step 1: divide the median house value by 1000 var pipeline = context.Transforms.CustomMapping <HouseBlockData, ToMedianHouseValue>( (input, output) => { output.NormalizedMedianHouseValue = input.MedianHouseValue / 1000; }, contractName: "MedianHouseValue" ); // get a 10-record preview of the transformed data // var model = pipeline.Fit(data); // var transformedData = model.Transform(data); // var preview = transformedData.Preview(maxRows: 10); // show the preview // WritePreview(preview); // step 2: bin the longitude var pipeline2 = pipeline.Append(context.Transforms.NormalizeBinning( inputColumnName: "Longitude", outputColumnName: "BinnedLongitude", maximumBinCount: 10 )) // step 3: bin the latitude .Append(context.Transforms.NormalizeBinning( inputColumnName: "Latitude", outputColumnName: "BinnedLatitude", maximumBinCount: 10 )) // step 4: one-hot encode the longitude .Append(context.Transforms.Categorical.OneHotEncoding( inputColumnName: "BinnedLongitude", outputColumnName: "EncodedLongitude" )) // step 5: one-hot encode the latitude .Append(context.Transforms.Categorical.OneHotEncoding( inputColumnName: "BinnedLatitude", outputColumnName: "EncodedLatitude" )); // step 6: cross the two one-hot encoded columns var pipeline3 = pipeline2.Append(context.Transforms.CustomMapping <FromLocation, ToLocation>( (input, output) => { output.Location = new float[input.EncodedLongitude.Length * input.EncodedLatitude.Length]; var index = 0; for (var i = 0; i < input.EncodedLongitude.Length; i++) { for (var j = 0; j < input.EncodedLatitude.Length; j++) { output.Location[index++] = input.EncodedLongitude[i] * input.EncodedLatitude[j]; } } }, contractName: "Location" )) // step 7: remove all the columns we don't need anymore .Append(context.Transforms.DropColumns( "MedianHouseValue", "Longitude", "Latitude", "BinnedLongitude", "BinnedLatitude", "EncodedLongitude", "EncodedLatitude" )); // get a 10-record preview of the transformed data var model = pipeline3.Fit(data); var transformedData = model.Transform(data); var preview = transformedData.Preview(maxRows: 10); // show the location vector //WritePreview(preview); WritePreviewColumn(preview, "Location"); }
public static void CreateCovidChart(CovidParser.Country[] countries, CovidChartTypes type, int startDay = 0, int endDay = 2147483647) { if (startDay < 0) { Debug.LogWarning("Start day is lower than 0, fixing"); startDay = 0; } int xMin = startDay; int xMax = countries[0].data.Count; int yMin = 0; CovidParser.Country.Data c = FindMax(countries, type, startDay, endDay); long yMax = 0; string title = "COVID-19 in "; for (int i = 0; i < countries.Length; i++) { title += countries[i].name + " "; } switch (type) { case CovidChartTypes.deaths: yMax = c.deaths; title += " deaths"; break; case CovidChartTypes.confirmed: yMax = c.confirmed; title += " confirmed"; break; case CovidChartTypes.recovered: yMax = c.recovered; title += " recovered"; break; case CovidChartTypes.all: yMax = c.confirmed; break; default: break; } List <double>[] values = null; //new List<double>(); List <double> keys = new List <double>(); for (int j = 0; j < countries.Length; j++) { for (int i = startDay; i < countries[j].data.Count && i < endDay; i++) { if (j == 0) { keys.Add(i); } switch (type) { case CovidChartTypes.deaths: if (values == null || values[j] == null) { values = new List <double> [countries.Length]; values[j] = new List <double>(); } values[j].Add(countries[j].data[i].deaths); break; case CovidChartTypes.confirmed: if (values == null || values[j] == null) { values = new List <double> [countries.Length]; values[j] = new List <double>(); } values[j].Add(countries[j].data[i].confirmed); break; case CovidChartTypes.recovered: if (values == null || values[j] == null) { values = new List <double> [countries.Length]; values[j] = new List <double>(); } values[j].Add(countries[j].data[i].recovered); break; case CovidChartTypes.all: //Debug.LogError("All is not supported yet"); if (values == null) { values = new List <double> [countries.Length * 3]; } if (values[j * 3] == null) { values[j * 3] = new List <double>(); values[j * 3 + 1] = new List <double>(); values[j * 3 + 2] = new List <double>(); } values[j * 3].Add(countries[j].data[i].confirmed); values[j * 3 + 1].Add(countries[j].data[i].deaths); values[j * 3 + 2].Add(countries[j].data[i].recovered); break; default: break; } } } var pl = new PLStream(); pl.sdev("pngcairo"); pl.sfnam("covid.png"); pl.init(); pl.col0(15); // Set to use 10000 instead of 1 * 10^5 pl.syax(10, 10); if (endDay < xMax) { xMax = endDay - 1; } pl.env(xMin, xMax, yMin, yMax, AxesScale.Independent, AxisBox.BoxTicksLabels); //pl.setcontlabelformat(10, 10); pl.col0(15); pl.lab("Days", "Cases", title); Pattern[] lg_patterns = new Pattern[values.Length]; double[] lg_scales = new double[values.Length]; string[] lg_texts = new string[values.Length]; int[] lg_lcolors = new int[values.Length]; double[] lg_lwidths = new double[values.Length]; int[] lg_scolors = new int[values.Length]; int[] lg_snumbers = new int[values.Length]; string[] lg_symbols = new string[values.Length]; LineStyle[] lg_lstyles = new LineStyle[values.Length]; LegendEntry[] lg_entries = new LegendEntry[values.Length]; double lg_spacing = 2.8 / (countries.Length + 0.5); double lg_tscale = 1.4 / (countries.Length + 0.5); double lg_toffset = 0.5; switch (type) { case CovidChartTypes.deaths: pl.scmap0(new int[] { 255, 255 }, new int[] { 255, 0 }, new int[] { 0, 0 }); break; case CovidChartTypes.confirmed: break; case CovidChartTypes.recovered: break; case CovidChartTypes.all: pl.scmap0(new int[] { 255, 255, 0, 204, 128, 0 }, new int[] { 255, 0, 255, 153, 0, 128 }, new int[] { 0, 0, 0, 0, 0, 0 }); break; default: break; } for (int i = 0; i < values.Length; i++) { pl.col0(i); pl.line(keys.ToArray(), values[i].ToArray()); lg_entries[i] = LegendEntry.Line; lg_lstyles[i] = LineStyle.Continuous; lg_lcolors[i] = i; lg_scolors[i] = i; lg_snumbers[i] = i; lg_lwidths[i] = 2; lg_texts[i] = countries[i / 3].name; if (i % 3 == 0) { lg_texts[i] += " confirmed"; } else if (i % 3 == 1) { lg_texts[i] += " deaths"; } else { lg_texts[i] += " recovered"; } lg_scales[i] = 1; } pl.legend(out double width, out double height, Legend.BoundingBox, Position.Left | Position.Top, 0, 0, 0.1, 0, 1, LineStyle.Continuous, 0, 0, lg_entries, lg_toffset, lg_tscale, lg_spacing, 1.0, lg_lcolors, lg_texts, lg_lcolors, lg_patterns, lg_scales, lg_lwidths, lg_lcolors, lg_lstyles, lg_lwidths, lg_scolors, lg_scales, lg_snumbers, lg_symbols); pl.eop(); pl.ResetOpts(); IDisposable disp = (IDisposable)pl; disp.Dispose(); //pl.gver(out var varText); //Debug.Log("Plplot version: " + varText); }
public string generateNNGraph(string matrixRef, int NumberInputsNodes, int NumberHiddenNodes, int NumberOutputNodes, int NumberOfEpochs, double LearningRate_eta, string title, int oneCol, string oneLab, int twoCol, string twoLab, string fileName) { var matrixComp = Value(matrixRef); if (matrixComp.GetType() == typeof(string)) { return("Could not find variable " + matrixRef); } MatrixData _graphData = (MatrixData)matrixComp; double[] x = _graphData.GetColumnCopy <double>(0); double[] y = _graphData.GetColumnCopy <double>(1); double[] y1 = _graphData.GetColumnCopy <double>(2); double xMax = _graphData.Max(0); var plot = new PLStream(); plot.width(1); plot.sdev("svg"); plot.sfnam(fileName + ".svg"); plot.scolbg(255, 255, 255); plot.init(); plot.env(0, xMax, 0, 105, AxesScale.Independent, AxisBox.BoxTicksLabelsAxes); Dictionary <int, string> cols = new Dictionary <int, string>(); cols.Add(0, "black"); cols.Add(1, "red"); cols.Add(2, "yellow"); cols.Add(3, "green"); cols.Add(4, "aquamarine"); cols.Add(5, "pink"); cols.Add(6, "wheat"); cols.Add(7, "grey"); cols.Add(8, "brown"); cols.Add(9, "blue"); cols.Add(10, "BlueViolet"); cols.Add(11, "cyan"); cols.Add(12, "turquoise"); cols.Add(13, "magenta"); cols.Add(14, "salmon"); cols.Add(15, "white"); plot.col0(1); plot.lab("Epoch", "Accuracy %", title); plot.ptex(xMax - 10, 25, 1.0, 0, 1, "Input Nodes: " + NumberInputsNodes); plot.ptex(xMax - 10, 20, 1.0, 0, 1, "Hidden Nodes: " + NumberHiddenNodes); plot.ptex(xMax - 10, 15, 1.0, 0, 1, "Output Nodes: " + NumberOutputNodes); plot.ptex(xMax - 10, 10, 1.0, 0, 1, "Epochs: " + NumberOfEpochs); plot.ptex(xMax - 10, 5, 1.0, 0, 1, "Learning Rate: " + LearningRate_eta); plot.col0(1); plot.col0(oneCol); plot.line(x, y); plot.ptex(xMax - 10, 35, 1.0, 0, 1, cols[oneCol] + ": " + oneLab); plot.col0(oneCol); plot.col0(twoCol); plot.line(x, y1); plot.ptex(xMax - 10, 30, 1.0, 0, 1, cols[twoCol] + ": " + twoLab); plot.col0(twoCol); plot.eop(); return(Directory.GetCurrentDirectory() + "\\" + fileName + ".svg"); }
private static void PlotRegressionChart(MLContext mlContext, string testDataSetPath, int numberOfRecordsToRead, string[] args) { ITransformer trainedModel; using (var stream = new FileStream(ModelPath, FileMode.Open, FileAccess.Read, FileShare.Read)) { trainedModel = mlContext.Model.Load(stream, out var modelInputSchema); } // Create prediction engine related to the loaded trained model var predFunction = mlContext.Model.CreatePredictionEngine <TaxiTrip, TaxiTripFarePredictionWithContribution>(trainedModel); string chartFileName = ""; using (var pl = new PLStream()) { if (args.Length == 1 && args[0] == "svg") { pl.sdev("svg"); chartFileName = "TaxiRegressionDistribution.svg"; pl.sfnam(chartFileName); } else { pl.sdev("pngcairo"); chartFileName = "TaxiRegressionDistribution.png"; pl.sfnam(chartFileName); } // use white background with black foreground pl.spal0("cmap0_alternate.pal"); // Initialize plplot pl.init(); // set axis limits const int xMinLimit = 0; const int xMaxLimit = 35; //Rides larger than $35 are not shown in the chart const int yMinLimit = 0; const int yMaxLimit = 35; //Rides larger than $35 are not shown in the chart pl.env(xMinLimit, xMaxLimit, yMinLimit, yMaxLimit, AxesScale.Independent, AxisBox.BoxTicksLabelsAxes); // Set scaling for mail title text 125% size of default pl.schr(0, 1.25); // The main title pl.lab("Actual", "Predicted", "Distribution of Taxi Fare Prediction"); // plot using different colors // see http://plplot.sourceforge.net/examples.php?demo=02 for palette indices pl.col0(1); int totalNumber = numberOfRecordsToRead; var testData = new TaxiTripCsvReader().GetDataFromCsv(testDataSetPath, totalNumber).ToList(); //This code is the symbol to paint char code = (char)9; // plot using other color //pl.col0(9); //Light Green //pl.col0(4); //Red pl.col0(2); //Blue double yTotal = 0; double xTotal = 0; double xyMultiTotal = 0; double xSquareTotal = 0; for (int i = 0; i < testData.Count; i++) { var x = new double[1]; var y = new double[1]; //Make Prediction var FarePrediction = predFunction.Predict(testData[i]); x[0] = testData[i].FareAmount; y[0] = FarePrediction.FareAmount; //Paint a dot pl.poin(x, y, code); xTotal += x[0]; yTotal += y[0]; double multi = x[0] * y[0]; xyMultiTotal += multi; double xSquare = x[0] * x[0]; xSquareTotal += xSquare; double ySquare = y[0] * y[0]; Console.WriteLine($"-------------------------------------------------"); Console.WriteLine($"Predicted : {FarePrediction.FareAmount}"); Console.WriteLine($"Actual: {testData[i].FareAmount}"); Console.WriteLine($"-------------------------------------------------"); } // Regression Line calculation explanation: // https://www.khanacademy.org/math/statistics-probability/describing-relationships-quantitative-data/more-on-regression/v/regression-line-example double minY = yTotal / totalNumber; double minX = xTotal / totalNumber; double minXY = xyMultiTotal / totalNumber; double minXsquare = xSquareTotal / totalNumber; double m = ((minX * minY) - minXY) / ((minX * minX) - minXsquare); double b = minY - (m * minX); //Generic function for Y for the regression line // y = (m * x) + b; double x1 = 1; //Function for Y1 in the line double y1 = (m * x1) + b; double x2 = 39; //Function for Y2 in the line double y2 = (m * x2) + b; var xArray = new double[2]; var yArray = new double[2]; xArray[0] = x1; yArray[0] = y1; xArray[1] = x2; yArray[1] = y2; pl.col0(4); pl.line(xArray, yArray); // end page (writes output to disk) pl.eop(); // output version of PLplot pl.gver(out var verText); Console.WriteLine("PLplot version " + verText); } // the pl object is disposed here // Open Chart File In Microsoft Photos App (Or default app, like browser for .svg) Console.WriteLine("Showing chart..."); var p = new Process(); string chartFileNamePath = @".\" + chartFileName; p.StartInfo = new ProcessStartInfo(chartFileNamePath) { UseShellExecute = true }; p.Start(); }
public string GenerateGraph() { double[] x = _graphData.GetColumnCopy <double>(0); double[] y = _graphData.GetColumnCopy <double>(1); double[] y1 = _graphData.GetColumnCopy <double>(2); double xMax = _graphData.Max(0); //double yMax = _graphData.Max(1); //yMax = (_graphData.Max(2) > yMax)? _graphData.Max(2) : yMax; //double yMin = _graphData.Min(1); //yMin = (_graphData.Min(2) < yMin)? _graphData.Min(2): yMin; var plot = new PLStream(); plot.width(1); plot.sdev("svg"); plot.sfnam("Test.svg"); plot.scolbg(255, 255, 255); plot.init(); plot.env(0, xMax, 0, 105, AxesScale.Independent, AxisBox.BoxTicksLabelsAxes); //####### PLPlot colour guide: //0 black (default background) //1 red (default foreground) //2 yellow //3 green //4 aquamarine //5 pink //6 wheat //7 grey //8 brown //9 blue //10 BlueViolet //11 cyan //12 turquoise //13 magenta //14 salmon //15 white plot.col0(1); if (!(_testingData == null)) { plot.lab("Epoch", "Accuracy %", "Test vs Train Accuracy"); } else { plot.lab("Epoch", "Accuracy %", "Test vs Val Accuracy"); } plot.ptex(xMax - 10, 25, 1.0, 0, 1, "Input Nodes: " + NumberInputsNodes); plot.ptex(xMax - 10, 20, 1.0, 0, 1, "Hidden Nodes: " + NumberHiddenNodes); plot.ptex(xMax - 10, 15, 1.0, 0, 1, "Output Nodes: " + NumberOutputNodes); plot.ptex(xMax - 10, 10, 1.0, 0, 1, "Epochs: " + NumberOfEpochs); plot.ptex(xMax - 10, 5, 1.0, 0, 1, "Learning Rate: " + LearningRate_eta); plot.col0(1); plot.col0(9); plot.line(x, y); plot.ptex(xMax - 10, 35, 1.0, 0, 1, "Blue: Train"); plot.col0(9); plot.col0(3); plot.line(x, y1); if (!(_testingData == null)) { plot.ptex(xMax - 10, 30, 1.0, 0, 1, "Green: Test"); } else { plot.ptex(xMax - 10, 30, 1.0, 0, 1, "Green: Val"); } plot.col0(3); plot.eop(); return("Saved \"Test.svg\""); }