コード例 #1
0
ファイル: FindMinimum.cs プロジェクト: jxz12/EcoBuilder
        /// <summary>
        /// Find vector x that minimizes the function f(x) using the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm.
        /// For more options and diagnostics consider to use <see cref="BfgsMinimizer"/> directly.
        /// An alternative routine using conjugate gradients (CG) is available in <see cref="ConjugateGradientMinimizer"/>.
        /// </summary>
        public static Vector <double> OfFunctionGradient(Func <Vector <double>, Tuple <double, Vector <double> > > functionGradient, Vector <double> initialGuess, double gradientTolerance = 1e-5, double parameterTolerance = 1e-5, double functionProgressTolerance = 1e-5, int maxIterations = 1000)
        {
            var objective = ObjectiveFunction.Gradient(functionGradient);
            var algorithm = new BfgsMinimizer(gradientTolerance, parameterTolerance, functionProgressTolerance, maxIterations);
            var result    = algorithm.FindMinimum(objective, initialGuess);

            return(result.MinimizingPoint);
        }
コード例 #2
0
ファイル: FindMinimum.cs プロジェクト: jxz12/EcoBuilder
        /// <summary>
        /// Find vector x that minimizes the function f(x), constrained within bounds, using the Broyden–Fletcher–Goldfarb–Shanno Bounded (BFGS-B) algorithm.
        /// For more options and diagnostics consider to use <see cref="BfgsBMinimizer"/> directly.
        /// </summary>
        public static Vector <double> OfFunctionGradientConstrained(Func <Vector <double>, double> function, Func <Vector <double>, Vector <double> > gradient, Vector <double> lowerBound, Vector <double> upperBound, Vector <double> initialGuess, double gradientTolerance = 1e-5, double parameterTolerance = 1e-5, double functionProgressTolerance = 1e-5, int maxIterations = 1000)
        {
            var objective = ObjectiveFunction.Gradient(function, gradient);
            var algorithm = new BfgsBMinimizer(gradientTolerance, parameterTolerance, functionProgressTolerance, maxIterations);
            var result    = algorithm.FindMinimum(objective, lowerBound, upperBound, initialGuess);

            return(result.MinimizingPoint);
        }
コード例 #3
0
        public void FindMinimum_BigRosenbrock_Hard()
        {
            var obj    = ObjectiveFunction.Gradient(BigRosenbrockFunction.Value, BigRosenbrockFunction.Gradient);
            var solver = new LimitedMemoryBfgsMinimizer(1e-5, 1e-5, 1e-5, 5, 1000);
            var result = solver.FindMinimum(obj, new DenseVector(new[] { -1.2 * 100.0, 1.0 * 100.0 }));

            Assert.That(Math.Abs(result.MinimizingPoint[0] - BigRosenbrockFunction.Minimum[0]), Is.LessThan(1e-3));
            Assert.That(Math.Abs(result.MinimizingPoint[1] - BigRosenbrockFunction.Minimum[1]), Is.LessThan(1e-3));
        }
コード例 #4
0
        public void FindMinimum_Rosenbrock_Overton()
        {
            var obj    = ObjectiveFunction.Gradient(RosenbrockFunction.Value, RosenbrockFunction.Gradient);
            var solver = new LimitedMemoryBfgsMinimizer(1e-5, 1e-5, 1e-5, 5, 100);
            var result = solver.FindMinimum(obj, new DenseVector(new[] { -0.9, -0.5 }));

            Assert.That(Math.Abs(result.MinimizingPoint[0] - RosenbrockFunction.Minimum[0]), Is.LessThan(1e-3));
            Assert.That(Math.Abs(result.MinimizingPoint[1] - RosenbrockFunction.Minimum[1]), Is.LessThan(1e-3));
        }
コード例 #5
0
        public void FindMinimum_Rosenbrock_Hard()
        {
            var obj    = ObjectiveFunction.Gradient(RosenbrockFunction.Value, RosenbrockFunction.Gradient);
            var solver = new ConjugateGradientMinimizer(1e-5, 1000);
            var result = solver.FindMinimum(obj, new DenseVector(new[] { -1.2, 1.0 }));

            Assert.That(Math.Abs(result.MinimizingPoint[0] - 1.0), Is.LessThan(1e-3));
            Assert.That(Math.Abs(result.MinimizingPoint[1] - 1.0), Is.LessThan(1e-3));
        }
コード例 #6
0
        public MinimizationResult Train()
        {
            Vector <double> theta = Vector <double> .Build.Dense(X.ColumnCount);

            LinearRegression lr       = new LinearRegression(this.X, this.y, this.Lambda);
            var obj                   = ObjectiveFunction.Gradient(lr.Cost, lr.Gradient);
            var solver                = new BfgsMinimizer(1e-5, 1e-5, 1e-5, 200);
            MinimizationResult result = solver.FindMinimum(obj, theta);

            return(result);
        }
コード例 #7
0
        public void OptimizeLambda(LLNAModel model, CorpusDocument doc)
        {
            int    i = 0, n = model.K - 1, iter = 0;
            double fOld   = 0;
            var    bundle = new Bundle(model.K, doc, model, this);
            var    x      = Vector <double> .Build.Dense(model.K - 1);

            for (i = 0; i < model.K - 1; i++)
            {
                x[i] = Lambda[i];
            }

            /*
             * var iterator = new MultidimensionalIterator(n);
             * var fdf = new MultidimensionalFunctionFDF
             * {
             *  F = (vector) =>
             *  {
             *      return ComputeFunction(vector, bundle);
             *  },
             *  DF = (vector) =>
             *  {
             *      return ComputeGradient(vector, bundle);
             *  },
             *  N = n
             * };
             * var multidimensionalMinimizer = new MultidimensionalMinimizer(n, iterator, fdf);
             * multidimensionalMinimizer.Set(x, 0.01, 1e-3);
             * do
             * {
             *  iter++;
             *  fOld = multidimensionalMinimizer.F;
             *  multidimensionalMinimizer.Iterate();
             * }
             * while (true);
             */

            var obj = ObjectiveFunction.Gradient((vector) => {
                return(ComputeFunction(vector, bundle));
            }, (vector) =>
            {
                return(ComputeGradient(vector, bundle));
            });
            var solver = new ConjugateGradientMinimizer(1e-8, 5000);
            var result = solver.FindMinimum(obj, x);

            for (i = 0; i < model.K - 1; i++)
            {
                Lambda[i] = result.MinimizingPoint[i];
            }

            Lambda[i] = 0;
        }
コード例 #8
0
        public void FindMinimum_Rosenbrock_Easy_OneBoundary()
        {
            var obj          = ObjectiveFunction.Gradient(RosenbrockFunction.Value, RosenbrockFunction.Gradient);
            var solver       = new BfgsBMinimizer(1e-5, 1e-5, 1e-5, maximumIterations: 1000);
            var lowerBound   = new DenseVector(new[] { 1.0, -5.0 });
            var upperBound   = new DenseVector(new[] { 5.0, 5.0 });
            var initialGuess = new DenseVector(new[] { 1.2, 1.2 });

            var result = solver.FindMinimum(obj, lowerBound, upperBound, initialGuess);

            Assert.That(Math.Abs(result.MinimizingPoint[0] - RosenbrockFunction.Minimum[0]), Is.LessThan(1e-3));
            Assert.That(Math.Abs(result.MinimizingPoint[1] - RosenbrockFunction.Minimum[1]), Is.LessThan(1e-3));
        }
コード例 #9
0
        public void FindMinimum_Rosenbrock_MinimumLesserOrEqualToUpperBoundary()
        {
            var obj    = ObjectiveFunction.Gradient(RosenbrockFunction.Value, RosenbrockFunction.Gradient);
            var solver = new BfgsBMinimizer(1e-5, 1e-5, 1e-5, maximumIterations: 1000);

            var lowerBound = new DenseVector(new[] { -2.0, -2.0 });
            var upperBound = new DenseVector(new[] { 0.5, 0.5 });

            var initialGuess = new DenseVector(new[] { -0.9, -0.5 });

            var result = solver.FindMinimum(obj, lowerBound, upperBound, initialGuess);

            Assert.LessOrEqual(result.MinimizingPoint[0], upperBound[0]);
            Assert.LessOrEqual(result.MinimizingPoint[1], upperBound[1]);
        }
コード例 #10
0
        public void FindMinimum_Quadratic_TwoBoundaries()
        {
            var obj = ObjectiveFunction.Gradient(
                x => x[0] * x[0] + x[1] * x[1],
                x => new DenseVector(new[] { 2 * x[0], 2 * x[1] })
                );
            var solver       = new BfgsBMinimizer(1e-5, 1e-5, 1e-5, maximumIterations: 1000);
            var lowerBound   = new DenseVector(new[] { 1.0, 1.0 });
            var upperBound   = new DenseVector(new[] { 2.0, 2.0 });
            var initialGuess = new DenseVector(new[] { 1.5, 1.5 });

            var result = solver.FindMinimum(obj, lowerBound, upperBound, initialGuess);

            Assert.That(Math.Abs(result.MinimizingPoint[0] - 1.0), Is.LessThan(1e-3));
            Assert.That(Math.Abs(result.MinimizingPoint[1] - 1.0), Is.LessThan(1e-3));
        }
コード例 #11
0
        /// <summary>
        /// 运用梯度下降法解决问题
        /// </summary>
        /// <returns></returns>
        public void LeastSquareSolver()
        {
            var len  = _xArr.Length;
            var xMat = new DenseMatrix(2, len);
            var yMat = new DenseMatrix(1, len);

            for (var i = 0; i < len; i++)
            {
                xMat[0, i] = 1;
                xMat[1, i] = _xArr[i];
            }

            for (var i = 0; i < len; i++)
            {
                yMat[0, i] = _yArr[i];
            }

            Vector <double> dLeastSquareLoss(Vector <double> theta)
            {
                /*
                 *
                 */
                var theta0 = 0.0;
                var theta1 = 0.0;
                var sum    = 0.0;

                //输入猜测的theta,输出当前点的斜率
                for (var i = 0; i < len; i++)
                {
                    var y_pred = theta[0] + theta[1] * _xArr[i];
                    theta0 += y_pred - _yArr[i];
                    theta1 += (y_pred - _yArr[i]) * _xArr[i];
                }
                return(new DenseVector(new[] { theta0 / len, theta1 / len }));
            }

            var solver = new BfgsMinimizer(1e-8, 1e-8, 1e-8, 10000);
            var f      = new Func <Vector <double>, double>(LeastSquareLoss);
            var g      = new Func <Vector <double>, Vector <double> >(dLeastSquareLoss);
            var obj    = ObjectiveFunction.Gradient(f, g);
            var r1     = solver.FindMinimum(obj, new DenseVector(new [] { 0.0, 0.0 }));

            Console.WriteLine(r1.MinimizingPoint);
        }
コード例 #12
0
        static void Main(string[] args)
        {
            if (!System.Console.IsOutputRedirected)
            {
                System.Console.Clear();
            }

            CultureInfo.CurrentCulture = CultureInfo.CreateSpecificCulture("en-US");

            System.Console.WriteLine("Regularized Logistic Regression ex.2");
            System.Console.WriteLine("====================================\n");

            var M = Matrix <double> .Build;
            var V = Vector <double> .Build;

            // Load Data
            // The first two columns contains the X values and the third column
            // contains the label (y).
            Matrix <double> data = DelimitedReader.Read <double>("data\\ex2data2.txt", false, ",", false);

            Console.WriteLine(data);

            Matrix <double> X = data.SubMatrix(0, data.RowCount, 0, 2);
            Vector <double> y = data.Column(2);

            System.Console.WriteLine("Features:\n");
            System.Console.WriteLine(X);

            System.Console.WriteLine("Label:\n");
            System.Console.WriteLine(y);

            PlotData(X, y);

            Pause();

            //  =========== Part 1: Regularized Logistic Regression ============
            //  In this part, you are given a dataset with data points that are not
            //  linearly separable. However, you would still like to use logistic
            //  regression to classify the data points.
            //
            //  To do so, you introduce more features to use -- in particular, you add
            //  polynomial features to our data matrix (similar to polynomial
            //  regression).
            //

            // Add Polynomial Features

            // Note that mapFeature also adds a column of ones for us, so the intercept
            // term is handled

            X = MapFeature(X.Column(0), X.Column(1));
            System.Console.WriteLine("Mapped features:\n");
            System.Console.WriteLine(X);
            Pause();

            // Initialize fitting parameters
            Vector <double> initial_theta = V.Dense(X.ColumnCount, 0.0);

            // Set regularization parameter lambda to 1
            double lambda = 1;

            // Compute and display initial cost and gradient for regularized logistic
            // regression
            LogisticRegression lr = new LogisticRegression(X, y);

            lr.Lambda = lambda;
            double          J    = lr.Cost(initial_theta);
            Vector <double> grad = lr.Gradient(initial_theta);

            System.Console.WriteLine("Cost at initial theta (zeros): {0:f5}\n", J);
            System.Console.WriteLine("Expected cost (approx): 0.693\n");
            System.Console.WriteLine("Gradient at initial theta (zeros) - first five values only:\n");
            System.Console.WriteLine(" {0:f5} \n", grad.SubVector(0, 5));
            System.Console.WriteLine("Expected gradients (approx) - first five values only:\n");
            System.Console.WriteLine(" 0.0085\n 0.0188\n 0.0001\n 0.0503\n 0.0115\n");

            Pause();

            // Compute and display cost and gradient
            // with all-ones theta and lambda = 10
            Vector <double> test_theta = V.Dense(X.ColumnCount, 1.0);

            lr.Lambda = 10;
            J         = lr.Cost(test_theta);
            grad      = lr.Gradient(test_theta);

            System.Console.WriteLine("\nCost at test theta (with lambda = 10): {0:f5}\n", J);
            System.Console.WriteLine("Expected cost (approx): 3.16\n");
            System.Console.WriteLine("Gradient at test theta - first five values only:\n");
            System.Console.WriteLine(" {0:f5} \n", grad.SubVector(0, 5));
            System.Console.WriteLine("Expected gradients (approx) - first five values only:\n");
            System.Console.WriteLine(" 0.3460\n 0.1614\n 0.1948\n 0.2269\n 0.0922\n");

            Pause();

            //// ============= Part 2: Regularization and Accuracies =============
            //  Optional Exercise:
            //  In this part, you will get to try different values of lambda and
            //  see how regularization affects the decision coundart
            //
            //  Try the following values of lambda (0, 1, 10, 100).
            //
            //  How does the decision boundary change when you vary lambda? How does
            //  the training set accuracy vary?
            //

            // Initialize fitting parameters
            initial_theta = V.Dense(X.ColumnCount, 0.0);

            // Set regularization parameter lambda to 1 (you should vary this)
            lambda = 1;

            // Optimize
            lr.Lambda = lambda;
            var obj    = ObjectiveFunction.Gradient(lr.Cost, lr.Gradient);
            var solver = new BfgsMinimizer(1e-5, 1e-5, 1e-5, 400);
            var result = solver.FindMinimum(obj, initial_theta);

            // Plot Boundary
            PlotDecisionBoundary(result.MinimizingPoint);
            GnuPlot.HoldOff();

            // Compute accuracy on our training set
            Vector <double>       pos = LogisticRegression.Predict(X, result.MinimizingPoint);
            Func <double, double> map = delegate(double d){
                if (d >= 0.5)
                {
                    return(1);
                }
                else
                {
                    return(0);
                }
            };

            pos = pos.Map(map);
            Vector <double> comp = V.Dense(y.Count);

            for (int i = 0; i < y.Count; i++)
            {
                if (pos[i] == y[i])
                {
                    comp[i] = 1;
                }
                else
                {
                    comp[i] = 0;
                }
            }

            double accurancy = comp.Mean() * 100;


            System.Console.WriteLine("Train Accuracy: {0:f5}\n", accurancy);
            System.Console.WriteLine("Expected accuracy (with lambda = 1): 83.1 (approx)\n");

            Pause();
        }
コード例 #13
0
        static void Main(string[] args)
        {
            if (!System.Console.IsOutputRedirected)
            {
                System.Console.Clear();
            }

            CultureInfo.CurrentCulture = CultureInfo.CreateSpecificCulture("en-US");

            System.Console.WriteLine("Multi-class Classification and Neural Networks ex.4");
            System.Console.WriteLine("===================================================\n");

            var M = Matrix <double> .Build;
            var V = Vector <double> .Build;

            // Setup the parameters you will use for this exercise
            int input_layer_size  = 400;  // 20x20 Input Images of Digits
            int hidden_layer_size = 25;   // 25 hidden units
            int num_labels        = 10;   // 10 labels, from 1 to 10
                                          // (note that we have mapped "0" to label 10)

            //  =========== Part 1: Loading and Visualizing Data =============
            //  We start the exercise by first loading and visualizing the dataset.
            //  You will be working with a dataset that contains handwritten digits.
            //

            // read all matrices of a file by name into a dictionary
            Dictionary <string, Matrix <double> > ms = MatlabReader.ReadAll <double>("data\\ex3data1.mat");

            Matrix <double> X = ms["X"];
            Vector <double> y = ms["y"].Column(0);

            // get a casual sequence of 100 int numbers
            var srs = new MathNet.Numerics.Random.SystemRandomSource();
            var seq = srs.NextInt32Sequence(0, 5000).Take(100).ToList();

            // Randomly select 100 data points to display
            Vector <double>[] sel = new Vector <double> [100];
            int             idx   = 0;
            Vector <double> v     = V.Dense(400);

            foreach (int i in seq)
            {
                sel[idx++] = X.Row(i);
            }

            // display
            DisplayData(sel);

            Pause();

            // ================ Part 2: Loading Parameters ================
            // In this part of the exercise, we load some pre-initialized
            // neural network parameters.

            System.Console.WriteLine("\nLoading Saved Neural Network Parameters ...\n");

            // read all matrices of a file by name into a dictionary
            Dictionary <string, Matrix <double> > mr = MatlabReader.ReadAll <double>("data\\ex3weights.mat");

            Matrix <double> theta1 = mr["Theta1"];      // 25 X 401
            Matrix <double> theta2 = mr["Theta2"];      // 10 X 26

            // Unroll parameters
            Vector <double> nn_params = NeuralNetwork.UnrollParameters(theta1, theta2);

            Pause();

            //  ================ Part 3: Compute Cost (Feedforward) ================
            //  To the neural network, you should first start by implementing the
            //  feedforward part of the neural network that returns the cost only. You
            //  should complete the code in nnCostFunction.m to return cost. After
            //  implementing the feedforward to compute the cost, you can verify that
            //  your implementation is correct by verifying that you get the same cost
            //  as us for the fixed debugging parameters.
            //
            //  We suggest implementing the feedforward cost *without* regularization
            //  first so that it will be easier for you to debug. Later, in part 4, you
            //  will get to implement the regularized cost.


            System.Console.WriteLine("\nFeedforward Using Neural Network ...\n");

            // Weight regularization parameter (we set this to 0 here).

            NeuralNetwork nn = new NeuralNetwork(X, y, input_layer_size, hidden_layer_size, num_labels);

            nn.Lambda = 0.0;
            double J = nn.Cost(nn_params);

            System.Console.WriteLine("Cost at parameters (loaded from ex4weights): {0:f6}\n(this value should be about 0.287629)\n", J);
            Pause();

            // =============== Part 4: Implement Regularization ===============
            // Once your cost function implementation is correct, you should now
            // continue to implement the regularization with the cost.
            //

            System.Console.WriteLine("\nChecking Cost Function (w/ Regularization) ... \n");

            // Weight regularization parameter (we set this to 1 here).
            nn.Lambda = 1.0;

            J = nn.Cost(nn_params);

            System.Console.WriteLine("Cost at parameters (loaded from ex4weights): {0:f6} \n(this value should be about 0.383770)\n", J);
            Pause();

            // ================ Part 5: Sigmoid Gradient  ================
            //  Before you start implementing the neural network, you will first
            //  implement the gradient for the sigmoid function. You should complete the
            //  code in the sigmoidGradient.m file.

            System.Console.WriteLine("\nEvaluating sigmoid gradient...\n");

            var g = nn.SigmoidGradient(V.DenseOfArray(new[] { -1.0, -0.5, 0, 0.5, 1 }));

            System.Console.WriteLine("Sigmoid gradient evaluated at [-1 -0.5 0 0.5 1]:\n  ");
            System.Console.WriteLine("{0:f5} ", g);
            System.Console.WriteLine("\n\n");

            Pause();


            // ================ Part 6: Initializing Pameters ================
            // In this part of the exercise, you will be starting to implment a two
            // layer neural network that classifies digits. You will start by
            // implementing a function to initialize the weights of the neural network
            // (randInitializeWeights.m)

            System.Console.WriteLine("\nInitializing Neural Network Parameters ...\n");

            Matrix <double> initial_Theta1 = RandInitializeWeights(input_layer_size + 1, hidden_layer_size);
            Matrix <double> initial_Theta2 = RandInitializeWeights(hidden_layer_size + 1, num_labels);

            // Unroll parameters
            Vector <double> initial_nn_params = NeuralNetwork.UnrollParameters(initial_Theta1, initial_Theta2);

            Pause();
            // =============== Part 7: Implement Backpropagation ===============
            // Once your cost matches up with ours, you should proceed to implement the
            // backpropagation algorithm for the neural network. You should add to the
            // code you've written in nnCostFunction.m to return the partial
            // derivatives of the parameters.

            System.Console.WriteLine("\nChecking Backpropagation... \n");
            CheckGradient(0);

            Pause();

            // =============== Part 8: Implement Regularization ===============
            //  Once your backpropagation implementation is correct, you should now
            //  continue to implement the regularization with the cost and gradient.

            System.Console.WriteLine("\nChecking Backpropagation (w/ Regularization) ... \n");

            //  Check gradients by running checkNNGradients
            double lambda = 3;

            CheckGradient(lambda);

            // Also output the costFunction debugging values
            nn.Lambda = lambda;
            double debug_J = nn.Cost(nn_params);

            System.Console.WriteLine("\n\nCost at (fixed) debugging parameters (w/ lambda = {0:f1}): {1:f6} " +
                                     "\n(for lambda = 3, this value should be about 0.576051)\n\n", lambda, debug_J);

            Pause();

            // =================== Part 8: Training NN ===================
            //  You have now implemented all the code necessary to train a neural
            //  network. To train your neural network, we will now use "fmincg", which
            //  is a function which works similarly to "fminunc". Recall that these
            //  advanced optimizers are able to train our cost functions efficiently as
            //  long as we provide them with the gradient computations.

            System.Console.WriteLine("\nTraining Neural Network... \n");

            //  After you have completed the assignment, change the MaxIter to a larger
            //  value to see how more training helps.
            int maxIter = 40;

            //  You should also try different values of lambda
            lambda    = 1;
            nn.Lambda = lambda;


            var obj    = ObjectiveFunction.Gradient(nn.Cost, nn.Gradient);
            var solver = new LimitedMemoryBfgsMinimizer(1e-5, 1e-5, 1e-5, 5, maxIter);
            var result = solver.FindMinimum(obj, initial_nn_params);

            System.Console.WriteLine("Reason For Exit: {0}", result.ReasonForExit);
            System.Console.WriteLine("Iterations: {0}", result.Iterations);
            System.Console.WriteLine("Cost: {0:e}", result.FunctionInfoAtMinimum.Value);


            Pause();

            // ================= Part 10: Implement Predict =================
            //  After training the neural network, we would like to use it to predict
            //  the labels. You will now implement the "predict" function to use the
            //  neural network to predict the labels of the training set. This lets
            //  you compute the training set accuracy.

            Vector <double> pred = nn.Predict(result.MinimizingPoint, X);
            Vector <double> comp = V.Dense(y.Count);

            for (int i = 0; i < y.Count; i++)
            {
                if (pred[i] == y[i])
                {
                    comp[i] = 1;
                }
                else
                {
                    comp[i] = 0;
                }
            }


            double accuracy = comp.Mean() * 100;

            System.Console.WriteLine("\nTraining Set Accuracy: {0:f5}\n", accuracy);

            Pause();
        }
コード例 #14
0
        static void Main(string[] args)
        {
            if (!System.Console.IsOutputRedirected)
            {
                System.Console.Clear();
            }

            CultureInfo.CurrentCulture = CultureInfo.CreateSpecificCulture("en-US");

            System.Console.WriteLine("Logistic Regression ex.2");
            System.Console.WriteLine("========================\n");

            var M = Matrix <double> .Build;
            var V = Vector <double> .Build;

            // Load Data
            // The first two columns contains the exam scores and the third column
            // contains the label.
            Matrix <double> data = DelimitedReader.Read <double>("data\\ex2data1.txt", false, ",", false);

            Console.WriteLine(data);

            Matrix <double> X = data.SubMatrix(0, data.RowCount, 0, 2);
            Vector <double> y = data.Column(2);

            System.Console.WriteLine("Features:\n");
            System.Console.WriteLine(X);

            System.Console.WriteLine("Label:\n");
            System.Console.WriteLine(y);

            // ==================== Part 1: Plotting ====================
            //  We start the exercise by first plotting the data to understand the
            //  the problem we are working with.

            System.Console.WriteLine("Plotting data with + indicating (y = 1) examples and o indicating (y = 0) examples.\n");
            PlotData(X, y);
            GnuPlot.HoldOff();

            Pause();

            // theta parameters
            Vector <double> initial_theta = V.Dense(X.ColumnCount + 1);

            // Add intercept term to X
            X = X.InsertColumn(0, V.Dense(X.RowCount, 1));

            // compute cost
            LogisticRegression lr   = new LogisticRegression(X, y);
            double             J    = lr.Cost(initial_theta);
            Vector <double>    grad = lr.Gradient(initial_theta);

            System.Console.WriteLine("Cost at initial theta (zeros): {0:f3}\n", J);
            System.Console.WriteLine("Expected cost (approx): 0.693\n");

            System.Console.WriteLine("Gradient at initial theta (zeros): \n");
            System.Console.WriteLine(" {0:f4} \n", grad);
            System.Console.WriteLine("Expected gradients (approx):\n -0.1000\n -12.0092\n -11.2628\n");

            // Compute and display cost and gradient with non-zero theta
            Vector <double> test_theta = V.DenseOfArray(new double[] { -24.0, 0.2, 0.2 });

            J    = lr.Cost(test_theta);
            grad = lr.Gradient(test_theta);

            System.Console.WriteLine("\nCost at test theta: {0:f3}\n", J);
            System.Console.WriteLine("Expected cost (approx): 0.218\n");
            System.Console.WriteLine("Gradient at test theta: \n");
            System.Console.WriteLine(" {0:f3} \n", grad);
            System.Console.WriteLine("Expected gradients (approx):\n 0.043\n 2.566\n 2.647\n");

            Pause();

            // ============= Part 3: Optimizing using fmin  ================
            //  In this exercise, I will use fmin function  to find the
            //  optimal parameters theta.
            var obj    = ObjectiveFunction.Gradient(lr.Cost, lr.Gradient);
            var solver = new BfgsMinimizer(1e-5, 1e-5, 1e-5, 1000);
            var result = solver.FindMinimum(obj, initial_theta);

            System.Console.WriteLine("Cost at theta found by fmin: {0:f5} after {1} iterations\n", result.FunctionInfoAtMinimum.Value, result.Iterations);
            System.Console.WriteLine("Expected cost (approx): 0.203\n");
            System.Console.WriteLine("theta: \n");
            System.Console.WriteLine(result.MinimizingPoint);
            System.Console.WriteLine("Expected theta (approx):\n");
            System.Console.WriteLine(" -25.161\n 0.206\n 0.201\n");

            Pause();

            PlotLinearBoundary(X, y, result.MinimizingPoint);
            GnuPlot.HoldOff();

            // ============== Part 4: Predict and Accuracies ==============
            //  After learning the parameters, you'll like to use it to predict the outcomes
            //  on unseen data. In this part, you will use the logistic regression model
            //  to predict the probability that a student with score 45 on exam 1 and
            //  score 85 on exam 2 will be admitted.
            //
            //  Furthermore, you will compute the training and test set accuracies of
            //  our model.
            //
            //  Your task is to complete the code in predict.m

            //  Predict probability for a student with score 45 on exam 1
            //  and score 85 on exam 2

            double prob = LogisticRegression.Predict(V.DenseOfArray(new [] { 1.0, 45.0, 85.0 }), result.MinimizingPoint);

            System.Console.WriteLine("For a student with scores 45 and 85, we predict an admission probability of {0:f5}\n", prob);
            System.Console.WriteLine("Expected value: 0.775 +/- 0.002\n\n");

            Pause();

            // Compute accuracy on our training set
            Vector <double>       pos = LogisticRegression.Predict(X, result.MinimizingPoint);
            Func <double, double> map = delegate(double d){
                if (d >= 0.5)
                {
                    return(1);
                }
                else
                {
                    return(0);
                }
            };

            pos = pos.Map(map);
            Vector <double> comp = V.Dense(y.Count);

            for (int i = 0; i < y.Count; i++)
            {
                if (pos[i] == y[i])
                {
                    comp[i] = 1;
                }
                else
                {
                    comp[i] = 0;
                }
            }

            double accurancy = comp.Mean() * 100;

            System.Console.WriteLine("Train Accuracy: {0:f5}\n", accurancy);
            System.Console.WriteLine("Expected accuracy (approx): 89.0\n");
            System.Console.WriteLine("\n");
        }
コード例 #15
0
        // BFGF Minimizer
        public static Value Argmin(Value function, Value initial, Value tolerance, Netlist netlist, Style style, int s)
        {
            if (!(initial is ListValue <Value>))
            {
                throw new Error("argmin: expecting a list for second argument");
            }
            Vector <double> initialGuess = CreateVector.Dense((initial as ListValue <Value>).ToDoubleArray("argmin: expecting a list of numbers for second argument"));

            if (!(tolerance is NumberValue))
            {
                throw new Error("argmin: expecting a number for third argument");
            }
            double toler = (tolerance as NumberValue).value;

            if (!(function is FunctionValue))
            {
                throw new Error("argmin: expecting a function as first argument");
            }
            FunctionValue closure = function as FunctionValue;

            if (closure.parameters.parameters.Count != 1)
            {
                throw new Error("argmin: initial values and function parameters have different lengths");
            }

            IObjectiveFunction objectiveFunction = ObjectiveFunction.Gradient(
                (Vector <double> objParameters) => {
                const string badResult  = "argmin: objective function should return a list with a number (cost) and a list of numbers (partial derivatives of cost)";
                List <Value> parameters = new List <Value>(); foreach (double parameter in objParameters)
                {
                    parameters.Add(new NumberValue(parameter));
                }
                ListValue <Value> arg1 = new ListValue <Value>(parameters);
                List <Value> arguments = new List <Value>(); arguments.Add(arg1);
                bool autoContinue      = netlist.autoContinue; netlist.autoContinue = true;
                Value result           = closure.ApplyReject(arguments, netlist, style, s);
                if (result == null)
                {
                    throw new Error(badResult);
                }
                netlist.autoContinue = autoContinue;
                if (!(result is ListValue <Value>))
                {
                    throw new Error(badResult);
                }
                List <Value> results = (result as ListValue <Value>).elements;
                if (results.Count != 2 || !(results[0] is NumberValue) || !(results[1] is ListValue <Value>))
                {
                    throw new Error(badResult);
                }
                double cost = (results[0] as NumberValue).value;
                ListValue <Value> gradients = results[1] as ListValue <Value>;
                KGui.gui.GuiOutputAppendText("argmin: parameters=" + arg1.Format(style) + " => cost=" + style.FormatDouble(cost) + ", gradients=" + results[1].Format(style) + Environment.NewLine);
                return(new Tuple <double, Vector <double> >(cost, CreateVector.Dense(gradients.ToDoubleArray(badResult))));
            });

            try {
                BfgsMinimizer      minimizer = new BfgsMinimizer(toler, toler, toler);
                MinimizationResult result    = minimizer.FindMinimum(objectiveFunction, initialGuess);
                if (result.ReasonForExit == ExitCondition.Converged || result.ReasonForExit == ExitCondition.AbsoluteGradient || result.ReasonForExit == ExitCondition.RelativeGradient)
                {
                    List <Value> elements = new List <Value>();
                    for (int i = 0; i < result.MinimizingPoint.Count; i++)
                    {
                        elements.Add(new NumberValue(result.MinimizingPoint[i]));
                    }
                    ListValue <Value> list = new ListValue <Value>(elements);
                    KGui.gui.GuiOutputAppendText("argmin: converged with parameters " + list.Format(style) + " and reason '" + result.ReasonForExit + "'" + Environment.NewLine);
                    return(list);
                }
                else
                {
                    throw new Error("reason '" + result.ReasonForExit.ToString() + "'");
                }
            } catch (Exception e) { throw new Error("argmin ended: " + ((e.InnerException == null) ? e.Message : e.InnerException.Message)); } // somehow we need to recatch the inner exception coming from CostAndGradient
        }