コード例 #1
0
        public void ConstructorTest2()
        {
            var distribution = new NoncentralTDistribution(
                degreesOfFreedom: 4, noncentrality: 2.42);

            double mean   = distribution.Mean;                                    // 3.0330202123035104
            double median = distribution.Median;                                  // 2.6034842414893795
            double var    = distribution.Variance;                                // 4.5135883917583683

            double cdf  = distribution.DistributionFunction(x: 1.4);              // 0.15955740661144721
            double pdf  = distribution.ProbabilityDensityFunction(x: 1.4);        // 0.23552141805184526
            double lpdf = distribution.LogProbabilityDensityFunction(x: 1.4);     // -1.4459534225195116

            double ccdf = distribution.ComplementaryDistributionFunction(x: 1.4); // 0.84044259338855276
            double icdf = distribution.InverseDistributionFunction(p: cdf);       // 1.4000000000123853

            double hf  = distribution.HazardFunction(x: 1.4);                     // 0.28023498559521387
            double chf = distribution.CumulativeHazardFunction(x: 1.4);           // 0.17382662901507062

            string str = distribution.ToString(CultureInfo.InvariantCulture);     // T(x; df = 4, μ = 2.42)

            Assert.AreEqual(3.0330202123035104, mean);
            Assert.AreEqual(2.6034842414893795, median);
            Assert.AreEqual(4.5135883917583683, var);
            Assert.AreEqual(0.17382662901507062, chf);
            Assert.AreEqual(0.15955740661144721, cdf);
            Assert.AreEqual(0.23552141805184526, pdf);
            Assert.AreEqual(-1.4459534225195116, lpdf);
            Assert.AreEqual(0.28023498559521387, hf);
            Assert.AreEqual(0.84044259338855276, ccdf);
            Assert.AreEqual(1.4000000000123853, icdf);
            Assert.AreEqual("T(x; df = 4, μ = 2.42)", str);
        }
コード例 #2
0
        public void DistributionFunctionTest()
        {
            double[,] table =
            {
                //   x    d     df      expected
                {  3.00, 0.0,  1, 0.8975836176504333 },
                {  3.00, 0.0,  2,       0.9522670169 },
                {  3.00, 0.0,  3, 0.9711655571887813 },
                {  3.00, 0.5,  1, 0.8231218863999999 },
                {  3.00, 0.5,  2,        0.904902151 },
                {  3.00, 0.5,  3,       0.9363471834 },
                {  3.00, 1.0,  1,       0.7301025986 },
                {  3.00, 1.0,  2,       0.8335594263 },
                {  3.00, 1.0,  3,       0.8774010255 },
                {  3.00, 2.0,  1,       0.5248571617 },
                {  3.00, 2.0,  2,       0.6293856597 },
                {  3.00, 2.0,  3,       0.6800271741 },
                {  3.00, 4.0,  1,      0.20590131975 },
                {  3.00, 4.0,  2,       0.2112148916 },
                {  3.00, 4.0,  3,       0.2074730718 },
                { 15.00, 7.0, 15,       0.9981130072 },
                { 15.00, 7.0, 20,        0.999487385 },
                { 15.00, 7.0, 25,       0.9998391562 },
                {  0.05, 1.0,  1,     0.168610566972 },
                {  0.05, 1.0,  2,      0.16967950985 },
                {  0.05, 1.0,  3,       0.1701041003 },
                {  4.00, 2.0, 10,       0.9247683363 },
                {  4.00, 3.0, 10,       0.7483139269 },
                {  4.00, 4.0, 10,       0.4659802096 },
                {  5.00, 2.0, 10,       0.9761872541 },
                {  5.00, 3.0, 10,       0.8979689357 },
                {  5.00, 4.0, 10,       0.7181904627 },
                {  6.00, 2.0, 10,       0.9923658945 },
                {  6.00, 3.0, 10,       0.9610341649 },
                {  6.00, 4.0, 10,        0.868800735 },
            };

            for (int i = 0; i < table.GetLength(0); i++)
            {
                double x     = table[i, 0];
                double delta = table[i, 1];
                double df    = table[i, 2];

                var target = new NoncentralTDistribution(df, delta);

                double expected = table[i, 3];
                double actual   = target.DistributionFunction(x);

                Assert.AreEqual(expected, actual, 1e-10);
            }
        }
コード例 #3
0
        /// <summary>
        ///  Computes the power for a test with givens values of
        ///  <see cref="IPowerAnalysis.Effect">effect size</see> and <see cref="IPowerAnalysis.Samples">
        ///  number of samples</see> under <see cref="IPowerAnalysis.Size"/>.
        /// </summary>
        ///
        /// <returns>
        ///  The power for the test under the given conditions.
        /// </returns>
        ///
        public override void ComputePower()
        {
            double delta = Effect / Math.Sqrt(1.0 / Samples1 + 1.0 / Samples2);
            double df    = Samples1 + Samples2 - 2;

            TDistribution           td = new TDistribution(df);
            NoncentralTDistribution nt = new NoncentralTDistribution(df, delta);

            switch (Tail)
            {
            case DistributionTail.TwoTail:
            {
                double Ta = td.InverseDistributionFunction(1.0 - Size / 2);
                double pa = nt.ComplementaryDistributionFunction(+Ta);
                double pb = nt.DistributionFunction(-Ta);
                Power = pa + pb;
                break;
            }

            case DistributionTail.OneLower:
            {
                double Ta = td.InverseDistributionFunction(Size);
                Power = nt.DistributionFunction(Ta);
                break;
            }

            case DistributionTail.OneUpper:
            {
                double Ta = td.InverseDistributionFunction(1.0 - Size);
                Power = nt.ComplementaryDistributionFunction(Ta);
                break;
            }

            default:
                throw new InvalidOperationException();
            }
        }
コード例 #4
0
        public void ConstructorTest2()
        {
            var distribution = new NoncentralTDistribution(
                degreesOfFreedom: 4, noncentrality: 2.42);

            double mean   = distribution.Mean;                                    // 3.0330202123035104
            double median = distribution.Median;                                  // 2.6034842414893795
            double var    = distribution.Variance;                                // 4.5135883917583683
            double mode   = distribution.Mode;                                    // 2.0940683409246641

            double cdf  = distribution.DistributionFunction(x: 1.4);              // 0.15955740661144721
            double pdf  = distribution.ProbabilityDensityFunction(x: 1.4);        // 0.23552141805184526
            double lpdf = distribution.LogProbabilityDensityFunction(x: 1.4);     // -1.4459534225195116

            double ccdf = distribution.ComplementaryDistributionFunction(x: 1.4); // 0.84044259338855276
            double icdf = distribution.InverseDistributionFunction(p: cdf);       // 1.4000000000123853

            double hf  = distribution.HazardFunction(x: 1.4);                     // 0.28023498559521387
            double chf = distribution.CumulativeHazardFunction(x: 1.4);           // 0.17382662901507062

            string str = distribution.ToString(CultureInfo.InvariantCulture);     // T(x; df = 4, μ = 2.42)

            Assert.AreEqual(3.0330202123035104, mean);
            Assert.AreEqual(2.6034842414893795, median);
            Assert.AreEqual(4.5135883917583683, var);
            Assert.AreEqual(2.0940683409246641, mode);
            Assert.AreEqual(0.17382662901507062, chf);
            Assert.AreEqual(0.15955740661144721, cdf);
            Assert.AreEqual(0.23552141805184526, pdf);
            Assert.AreEqual(-1.4459534225195116, lpdf);
            Assert.AreEqual(0.28023498559521387, hf);
            Assert.AreEqual(0.84044259338855276, ccdf);
            Assert.AreEqual(1.4000000000123853, icdf);
            Assert.AreEqual("T(x; df = 4, μ = 2.42)", str);

            var range1 = distribution.GetRange(0.95);
            var range2 = distribution.GetRange(0.99);
            var range3 = distribution.GetRange(0.01);

            Assert.AreEqual(0.7641009341279591, range1.Min);
            Assert.AreEqual(6.6668131011180742, range1.Max);
            Assert.AreEqual(0.098229727233034247, range2.Min);
            Assert.AreEqual(10.541194525031729, range2.Max);
            Assert.AreEqual(0.09822972723303551, range3.Min);
            Assert.AreEqual(10.541194525031729, range3.Max);
        }