コード例 #1
0
        /// <summary>
        /// See the documentation on the base class.
        /// <seealso cref="Module"/>
        /// </summary>
        /// <param name="x">X coordinate</param>
        /// <param name="y">Y coordinate</param>
        /// <param name="z">Z coordinate</param>
        /// <returns>Returns the computed value</returns>
        public override double GetValue(double x, double y, double z)
        {
            var ix = NoiseMath.FastFloor(x);
            var iy = NoiseMath.FastFloor(y);
            var iz = NoiseMath.FastFloor(z);

            return(((ix & 1) ^ (iy & 1) ^ (iz & 1)) != 0 ? -1.0 : 1.0);
        }
コード例 #2
0
ファイル: Simplex.cs プロジェクト: wgraham17/SharpNoise
        // 3D simplex noise
        public static double SimplexNoise3D(double xin, double yin, double zin)
        {
            // Skew the input space to determine which simplex cell we're in
            // Very nice and simple skew factor for 3D
            double s = (xin + yin + zin) * F3;
            int    i = NoiseMath.FastFloor(xin + s);
            int    j = NoiseMath.FastFloor(yin + s);
            int    k = NoiseMath.FastFloor(zin + s);

            double t = (i + j + k) * G3;
            // Unskew the cell origin back to (x,y,z) space
            double X0 = i - t;
            double Y0 = j - t;
            double Z0 = k - t;
            // The x,y,z distances from the cell origin
            double x0 = xin - X0;
            double y0 = yin - Y0;
            double z0 = zin - Z0;

            // For the 3D case, the simplex shape is a slightly irregular tetrahedron.
            // Determine which simplex we are in.
            int i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords
            int i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords

            if (x0 >= y0)
            {
                // X Y Z order
                if (y0 >= z0)
                {
                    i1 = 1;
                    j1 = 0;
                    k1 = 0;
                    i2 = 1;
                    j2 = 1;
                    k2 = 0;
                }
                // X Z Y order
                else if (x0 >= z0)
                {
                    i1 = 1;
                    j1 = 0;
                    k1 = 0;
                    i2 = 1;
                    j2 = 0;
                    k2 = 1;
                }
                // Z X Y order
                else
                {
                    i1 = 0;
                    j1 = 0;
                    k1 = 1;
                    i2 = 1;
                    j2 = 0;
                    k2 = 1;
                }
            }
            else // x0<y0
            {
                // Z Y X order
                if (y0 < z0)
                {
                    i1 = 0;
                    j1 = 0;
                    k1 = 1;
                    i2 = 0;
                    j2 = 1;
                    k2 = 1;
                }
                // Y Z X order
                else if (x0 < z0)
                {
                    i1 = 0;
                    j1 = 1;
                    k1 = 0;
                    i2 = 0;
                    j2 = 1;
                    k2 = 1;
                }
                // Y X Z order
                else
                {
                    i1 = 0;
                    j1 = 1;
                    k1 = 0;
                    i2 = 1;
                    j2 = 1;
                    k2 = 0;
                }
            }

            // A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z),
            // a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and
            // a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where
            // c = 1/6.
            double x1 = x0 - i1 + G3; // Offsets for second corner in (x,y,z) coords
            double y1 = y0 - j1 + G3;
            double z1 = z0 - k1 + G3;
            double x2 = x0 - i2 + 2.0 * G3; // Offsets for third corner in (x,y,z) coords
            double y2 = y0 - j2 + 2.0 * G3;
            double z2 = z0 - k2 + 2.0 * G3;
            double x3 = x0 - 1.0 + 3.0 * G3; // Offsets for last corner in (x,y,z) coords
            double y3 = y0 - 1.0 + 3.0 * G3;
            double z3 = z0 - 1.0 + 3.0 * G3;

            // Work out the hashed gradient indices of the four simplex corners
            int ii  = i & 255;
            int jj  = j & 255;
            int kk  = k & 255;
            int gi0 = PermMod12[ii + Perm[jj + Perm[kk]]];
            int gi1 = PermMod12[ii + i1 + Perm[jj + j1 + Perm[kk + k1]]];
            int gi2 = PermMod12[ii + i2 + Perm[jj + j2 + Perm[kk + k2]]];
            int gi3 = PermMod12[ii + 1 + Perm[jj + 1 + Perm[kk + 1]]];

            // Noise contributions from the four corners
            double n0 = 0.0, n1 = 0.0, n2 = 0.0, n3 = 0.0;

            // Calculate the contribution from the four corners
            double t0 = 0.6 - x0 * x0 - y0 * y0 - z0 * z0;

            if (t0 >= 0)
            {
                t0 *= t0;
                n0  = t0 * t0 * Dot(ref Grad3[gi0], x0, y0, z0);
            }

            double t1 = 0.6 - x1 * x1 - y1 * y1 - z1 * z1;

            if (t1 >= 0)
            {
                t1 *= t1;
                n1  = t1 * t1 * Dot(ref Grad3[gi1], x1, y1, z1);
            }

            double t2 = 0.6 - x2 * x2 - y2 * y2 - z2 * z2;

            if (t2 >= 0)
            {
                t2 *= t2;
                n2  = t2 * t2 * Dot(ref Grad3[gi2], x2, y2, z2);
            }

            double t3 = 0.6 - x3 * x3 - y3 * y3 - z3 * z3;

            if (t3 >= 0)
            {
                t3 *= t3;
                n3  = t3 * t3 * Dot(ref Grad3[gi3], x3, y3, z3);
            }

            // Add contributions from each corner to get the final noise value.
            // The result is scaled to stay just inside [-1,1]
            return(32.0 * (n0 + n1 + n2 + n3));
        }