/// <summary> /// Overridden.Constucts the network topology. /// </summary> protected override void CreateNetwork() { nodes = new NeuroNode[NodesCount]; links = new NeuroLink[LinksCount]; for (var i = 0; i < InputNodesCount; i++) { nodes[i] = new BidirectionalAssociativeMemoryInputNode(); } for (var i = InputNodesCount; i < InputNodesCount + OutputNodesCount; i++) { nodes[i] = new BidirectionalAssociativeMemoryOutputNode(); } for (var i = 0; i < linksCount; i++) { links[i] = new BidirectionalAssociativeMemoryLink(); } var k = 0; for (var i = 0; i < InputNodesCount; i++) { for (var j = InputNodesCount; j < InputNodesCount + OutputNodesCount; j++) { nodes[i].LinkTo(nodes[j], links[k]); k++; } } }
/// <summary> /// Overridden.Initializes network data after construction. /// </summary> protected override void CreateNetwork() { nodes = new NeuroNode[0]; links = new NeuroLink[0]; networksCount = 0; orthogonalBAMEnergy = -inputLayerNodesCount * outputLayerNodesCount; bestError = double.PositiveInfinity; }
/// <summary> /// Overridden.Method that constructs network topology. /// </summary> protected override void CreateNetwork() { nodes = new NeuroNode[NodesCount]; links = new NeuroLink[LinksCount]; var cnt = 0; for (var i = 0; i < InputNodesCount; i++) { nodes[cnt] = new InputNode(); cnt++; } firstMiddleNode = cnt; for (var i = 1; i < (layersCount - 1); i++) { for (var j = 0; j < nodesInLayer[i]; j++) { nodes[cnt] = new BackPropagationMiddleNode(LearningRate, momentum); cnt++; } } firstOutputNode = cnt; for (var i = 0; i < OutputNodesCount; i++) { nodes[cnt] = new BackPropagationOutputNode(LearningRate, momentum); cnt++; } for (var i = 0; i < LinksCount; i++) { links[i] = CreateLink(); } cnt = 0; var l1 = 0; var l2 = firstMiddleNode; for (var i = 0; i < (layersCount - 1); i++) { for (var j = 0; j < nodesInLayer[i + 1]; j++) { for (var k = 0; k < nodesInLayer[i]; k++) { nodes[l1 + k].LinkTo(nodes[l2 + j], links[cnt]); cnt++; } } l1 = l2; l2 += nodesInLayer[i + 1]; } }
/// <summary> /// Overridden.Constructs network topology. /// </summary> /// <remarks>Creates nodes, links and connects nodes using created links.</remarks> protected override void CreateNetwork() { nodes = new NeuroNode[NodesCount]; links = new NeuroLink[LinksCount]; for (var i = 0; i < InputNodesCount; i++) { nodes[i] = new InputNode(); } nodes[NodesCount - 2] = new BiasNode(1); nodes[NodesCount - 1] = new AdalineNode(LearningRate); for (var i = 0; i < LinksCount; i++) { links[i] = new AdalineLink(); } for (var i = 0; i < LinksCount; i++) { nodes[i].LinkTo(nodes[NodesCount - 1], links[i]); } }
/// <summary> /// Overridden.Constructs network topology. /// </summary> /// <remarks>Creates nodes, links and connects nodes using created links.</remarks> protected override void CreateNetwork() { nodes = new NeuroNode[NodesCount]; links = new NeuroLink[LinksCount]; for (var i = 0; i < InputNodesCount; i++) nodes[i] = new InputNode(); nodes[NodesCount - 2] = new BiasNode(1); nodes[NodesCount - 1] = new AdalineNode(LearningRate); for (var i = 0; i < LinksCount; i++) links[i] = new AdalineLink(); for (var i = 0; i < LinksCount; i++) nodes[i].LinkTo(nodes[NodesCount - 1], links[i]); }
/// <summary> /// Overridden.Method that constructs network topology. /// </summary> protected override void CreateNetwork() { nodes = new NeuroNode[NodesCount]; links = new NeuroLink[LinksCount]; var cnt = 0; for (var i = 0; i < InputNodesCount; i++) { nodes[cnt] = new InputNode(); cnt++; } firstMiddleNode = cnt; for (var i = 1; i < (layersCount - 1); i++) for (var j = 0; j < nodesInLayer[i]; j++) { nodes[cnt] = new BackPropagationMiddleNode(LearningRate, momentum); cnt++; } firstOutputNode = cnt; for (var i = 0; i < OutputNodesCount; i++) { nodes[cnt] = new BackPropagationOutputNode(LearningRate, momentum); cnt++; } for (var i = 0; i < LinksCount; i++) links[i] = CreateLink(); cnt = 0; var l1 = 0; var l2 = firstMiddleNode; for (var i = 0; i < (layersCount - 1); i++) { for (var j = 0; j < nodesInLayer[i + 1]; j++) for (var k = 0; k < nodesInLayer[i]; k++) { nodes[l1 + k].LinkTo(nodes[l2 + j], links[cnt]); cnt++; } l1 = l2; l2 += nodesInLayer[i + 1]; } }
/// <summary> /// Overridden.Constructs network topology. /// </summary> protected override void CreateNetwork() { nodes = new NeuroNode[NodesCount]; linksCount = NodesCount*rowsCount*columsCount; kohonenLayer = new NeuroNode[rowsCount, columsCount]; links = new NeuroLink[LinksCount]; for (var i = 0; i < NodesCount; i++) nodes[i] = new InputNode(); var curr = 0; for (var row = 0; row < rowsCount; row++) for (var col = 0; col < columsCount; col++) { kohonenLayer[row, col] = new SelfOrganizingNode(learningRate); for (var i = 0; i < NodesCount; i++) { links[curr] = new SelfOrganizingLink(); nodes[i].LinkTo(kohonenLayer[row, col], links[curr]); curr++; } } }
/// <summary> /// Overridden.Initializes network data after construction. /// </summary> protected override void CreateNetwork() { nodes = new NeuroNode[0]; links = new NeuroLink[0]; networksCount = 0; orthogonalBAMEnergy = -inputLayerNodesCount*outputLayerNodesCount; bestError = double.PositiveInfinity; }
/// <summary> /// Overridden.Constucts the network topology. /// </summary> protected override void CreateNetwork() { nodes = new NeuroNode[NodesCount]; links = new NeuroLink[LinksCount]; for (var i = 0; i < InputNodesCount; i++) nodes[i] = new BidirectionalAssociativeMemoryInputNode(); for (var i = InputNodesCount; i < InputNodesCount + OutputNodesCount; i++) nodes[i] = new BidirectionalAssociativeMemoryOutputNode(); for (var i = 0; i < linksCount; i++) links[i] = new BidirectionalAssociativeMemoryLink(); var k = 0; for (var i = 0; i < InputNodesCount; i++) for (var j = InputNodesCount; j < InputNodesCount + OutputNodesCount; j++) { nodes[i].LinkTo(nodes[j], links[k]); k++; } }