internal static void backPropogationDemo() { try { DataSet irisDataSet = DataSetFactory.getIrisDataSet(); INumerizer numerizer = new IrisDataSetNumerizer(); NeuralNetworkDataSet innds = new IrisNeuralNetworkDataSet(); innds.CreateExamplesFromDataSet(irisDataSet, numerizer); NeuralNetworkConfig config = new NeuralNetworkConfig(); config.SetConfig(FeedForwardNeuralNetwork.NUMBER_OF_INPUTS, 4); config.SetConfig(FeedForwardNeuralNetwork.NUMBER_OF_OUTPUTS, 3); config.SetConfig(FeedForwardNeuralNetwork.NUMBER_OF_HIDDEN_NEURONS, 6); config.SetConfig(FeedForwardNeuralNetwork.LOWER_LIMIT_WEIGHTS, -2.0); config.SetConfig(FeedForwardNeuralNetwork.UPPER_LIMIT_WEIGHTS, 2.0); FeedForwardNeuralNetwork ffnn = new FeedForwardNeuralNetwork(config); ffnn.SetTrainingScheme(new BackPropagationLearning(0.1, 0.9)); ffnn.TrainOn(innds, 1000); innds.RefreshDataset(); int[] result = ffnn.TestOnDataSet(innds); System.Console.WriteLine(result[0] + " right, " + result[1] + " wrong"); } catch (Exception e) { throw e; } }
public void testDataSetPopulation() { DataSet irisDataSet = DataSetFactory.getIrisDataSet(); INumerizer numerizer = new IrisDataSetNumerizer(); NeuralNetworkDataSet innds = new IrisNeuralNetworkDataSet(); innds.CreateExamplesFromDataSet(irisDataSet, numerizer); NeuralNetworkConfig config = new NeuralNetworkConfig(); config.SetConfig(FeedForwardNeuralNetwork.NUMBER_OF_INPUTS, 4); config.SetConfig(FeedForwardNeuralNetwork.NUMBER_OF_OUTPUTS, 3); config.SetConfig(FeedForwardNeuralNetwork.NUMBER_OF_HIDDEN_NEURONS, 6); config.SetConfig(FeedForwardNeuralNetwork.LOWER_LIMIT_WEIGHTS, -2.0); config.SetConfig(FeedForwardNeuralNetwork.UPPER_LIMIT_WEIGHTS, 2.0); FeedForwardNeuralNetwork ffnn = new FeedForwardNeuralNetwork(config); ffnn.SetTrainingScheme(new BackPropagationLearning(0.1, 0.9)); ffnn.TrainOn(innds, 10); innds.RefreshDataset(); ffnn.TestOnDataSet(innds); }
internal static void backPropogationDemo() { try { System.Console.WriteLine(Util.ntimes("*", 100)); System.Console.WriteLine( "\n BackpropagationDemo - Running BackProp on Iris data Set with {0} epochs of learning ", epochs); System.Console.WriteLine(Util.ntimes("*", 100)); DataSet animalDataSet = DataSetFactory.getAnimalDataSet(); INumerizer numerizer = new AnimalDataSetNumerizer(); NeuralNetworkDataSet innds = new IrisNeuralNetworkDataSet(); innds.CreateExamplesFromDataSet(animalDataSet, numerizer); NeuralNetworkConfig config = new NeuralNetworkConfig(); config.SetConfig(FeedForwardNeuralNetwork.NUMBER_OF_INPUTS, 20); config.SetConfig(FeedForwardNeuralNetwork.NUMBER_OF_OUTPUTS, 3); config.SetConfig(FeedForwardNeuralNetwork.NUMBER_OF_HIDDEN_NEURONS, numNeuronsPerLayer); config.SetConfig(FeedForwardNeuralNetwork.LOWER_LIMIT_WEIGHTS, -2.0); config.SetConfig(FeedForwardNeuralNetwork.UPPER_LIMIT_WEIGHTS, 2.0); FeedForwardNeuralNetwork ffnn = new FeedForwardNeuralNetwork(config); ffnn.SetTrainingScheme(new BackPropagationLearning(0.1, 0.9)); ffnn.TrainOn(innds, epochs); innds.RefreshDataset(); int[] result = ffnn.TestOnDataSet(innds); System.Console.WriteLine(result[0] + " right, " + result[1] + " wrong"); } catch (Exception e) { throw e; } }