/// <summary> /// Creating FeedForward - Neural Network /// </summary> /// <param name="memoryFolderName"></param> /// <param name="networkStructure"></param> /// <param name="testDatasetPath"></param> /// <returns>Returns success result of network creating</returns> public bool CreateNetwork(string memoryFolderName, NetworkStructure networkStructure, string testDatasetPath = null) { _networkStructure = networkStructure; if (FileManager.CheckMemoryIntegrity(networkStructure, memoryFolderName)) { try { _networkTeacher = new NetworksTeacher(networkStructure); } catch { return(false); } if (testDatasetPath != null) { _networkTeacher.TestVectors = FileManager.LoadTestDataset(testDatasetPath); } return(true); } else { return(false); } }
// TODO: Выделить структуру Extraction-зоны в отдельный объект public void CreateNetwork(NetworkStructure networkStructure, int netsCountInAssembly = 1, string testDatasetsPath = null) { _fileManager = new FileManager(networkStructure); // TODO: [WARP] Тут настраивается схема слоев convolution и pooling Extractor extractor = new Extractor("cpcppp", CreateConvFiltersScheme()); _networkTeacher = new NetworksTeacher(extractor, networkStructure, netsCountInAssembly, _fileManager); // TODO: Сделать тестовое, но по изображению //if (testDatasetsPath != null) //{ // _networkTeacher.TestVectors = _fileManager.LoadDatasets(testDatasetsPath); //} }