public void NaivebayersLanguageTest() { var netMLString = "create classification naivebayers linearbayeskernel"; NetMLCreator netMLCreator = new NetMLCreator(netMLString); DataSetLoader dataSetLoader = new DataSetLoader(); var data = dataSetLoader.SelectAnimals(); netMLCreator.Create(data); netMLCreator.Train(); var testData = dataSetLoader.SelectAnimals(); var trueCounter = 0; var counter = 0; foreach (var item in testData) { var outputValue = netMLCreator.Classify(item.Item1); if (outputValue == item.Item2) { trueCounter++; } Debug.WriteLine(string.Format("Value {0} - Predicted {1} = {2}", item.Item2, outputValue, (outputValue == item.Item2) ? "true" : "false")); counter++; } Debug.WriteLine(string.Format("Data {0} - True {1} Verhältnis: {2}", counter.ToString(), trueCounter.ToString(), (Convert.ToDouble(trueCounter) / Convert.ToDouble(counter)).ToString())); }
public void BackprobpagationLanguageTest() { var netMLString = "create classification backpropagation inputneurons = 16 outputneurons = 1 firsthiddenlayerneurons = 16 evolutions = 100 learningrate = 0.1 "; NetMLParser netMLParser = new NetMLParser(); var result = netMLParser.Parse(netMLString); NetMLCreator netMLCreator = new NetMLCreator(result); DataSetLoader dataSetLoader = new DataSetLoader(); var data = dataSetLoader.SelectAnimals(); netMLCreator.Create(data); netMLCreator.Train(); var testData = dataSetLoader.SelectAnimals(); var trueCounter = 0; var counter = 0; foreach (var item in testData) { var outputValue = netMLCreator.Classify(item.Item1); if (outputValue == item.Item2) { trueCounter++; } Debug.WriteLine(string.Format("Value {0} - Predicted {1} = {2}", item.Item2, outputValue, (outputValue == item.Item2) ? "true" : "false")); counter++; } Debug.WriteLine(string.Format("Data {0} - True {1} Verhältnis: {2}", counter.ToString(), trueCounter.ToString(), (Convert.ToDouble(trueCounter) / Convert.ToDouble(counter)).ToString())); }
public void ClusteringLanguageTest() { var netMLString = "create clustering kmetroids euclidmetric "; NetMLParser netMLParser = new NetMLParser(); var result = netMLParser.Parse(netMLString); NetMLCreator netMLCreator = new NetMLCreator(result); DataSetLoader dataSetLoader = new DataSetLoader(); var irises = dataSetLoader.SelectClusteringIrises(); netMLCreator.Create(irises); var clusters = netMLCreator.Cluster(3); var clusterCounter = 0; Dictionary <int, int> clusterDictonary = new Dictionary <int, int>(); foreach (var cluster in clusters) { Debug.WriteLine(string.Format("Cluster {0} - Count {1}", clusterCounter, cluster.Count)); clusterDictonary.Add(clusterCounter, 0); clusterCounter++; } var irisesTest = dataSetLoader.SelectClusteringIrises(); var trueCounter = 0; var counter = 0; foreach (var item in irisesTest) { var outputValue = netMLCreator.CalculateClusterAffinity(item); Debug.WriteLine(string.Format("Value {0} - Predicted {1}", item, outputValue)); clusterDictonary[outputValue]++; counter++; trueCounter++; } clusterCounter = 0; foreach (var cluster in clusters) { var calculatedCluster = clusterDictonary[clusterCounter]; Debug.WriteLine(string.Format("Cluster {0} - Original Count {1} - Calculated Count {2}", clusterCounter, cluster.Count, calculatedCluster)); clusterCounter++; } }