// Update is called once per frame void Update() { //acceleration & forces perd.vel = new MyVec(magnuss.x, -gravity, perd.vel.z); velocity = perd.vel; magnuss = ((MyVec.Cross(perd.angularV, perd.vel)) * magnussCoef * airDens * crossSectionalArea * radius) * 0.5f; drag = (MyVec.Scale(perd.vel, perd.vel) * proportionalCoef * crossSectionalArea * airDens) * -0.5f; acc = (magnuss + drag + new MyVec(0, -gravity * mass, 0)) / mass; MagnusX = magnuss.x; DragX = drag.x; DragY = drag.y; DragZ = drag.z; perd.pos.x += (magnuss.x - drag.x) * Time.deltaTime; perd.pos.y -= (gravity - drag.y) * (Time.deltaTime); perd.pos.z += (perd.vel.z - drag.z) * Time.deltaTime; positions = perd.pos; //rotation float angle = perd.angularV.magnitude * Time.deltaTime; angularD = perd.angularV; rot = new MyQuat(angularD.x * Mathf.Sin(angle / 2), angularD.y * Mathf.Sin(angle / 2), angularD.z * Mathf.Sin(angle / 2), Mathf.Cos(angle / 2)); final = rot * new MyQuat(transform.rotation.x, transform.rotation.y, transform.rotation.z, transform.rotation.w); transform.rotation = new Quaternion(final.x, final.y, final.z, final.w); transform.position = new Vector3(perd.pos.x, perd.pos.y, perd.pos.z); }
void Update() { // Copy the joints positions to work with for (int i = 0; i < joints.Length; i++) { copy[i] = new MyVec(joints[i].position.x, joints[i].position.y, joints[i].position.z); //Copy the joints if (i < joints.Length - 1) { distances[i] = MyVec.Distance(joints[i + 1].position, joints[i].position); //Calculate the distances } } done = (copy[copy.Length - 1] - new MyVec(target.position.x, target.position.y, target.position.z)).magnitude < treshold_condition; if (!done) { float targetRootDist = MyVec.Distance(copy[0], new MyVec(target.position.x, target.position.y, target.position.z)); // Update joint positions if (targetRootDist > distances.Sum()) { // The target is unreachable for (int i = 0; i < copy.Length - 1; i++) { float r = (new MyVec(target.position.x, target.position.y, target.position.z) - copy[i]).magnitude; float lambda = distances[i] / r; copy[i + 1] = copy[i] * (1 - lambda) + new MyVec(target.position.x, target.position.y, target.position.z) * lambda; } } else { MyVec b = copy[0]; float difA = (copy[copy.Length - 1] - new MyVec(target.position.x, target.position.y, target.position.z)).magnitude; // The target is reachable while (difA > treshold_condition) { // STAGE 1: FORWARD REACHING copy[copy.Length - 1] = new MyVec(target.position.x, target.position.y, target.position.z); for (int i = copy.Length - 2; i > 0; i--) { float r = (copy[i + 1] - copy[i]).magnitude; float lambda = distances[i] / r; copy[i] = copy[i + 1] * (1 - lambda) + copy[i] * lambda; } // STAGE 2: BACKWARD REACHING copy[0] = b; for (int i = 0; i < copy.Length - 1; i++) { float r = (copy[i + 1] - copy[i]).magnitude; float lambda = distances[i] / r; copy[i + 1] = copy[i] * (1 - lambda) + copy[i + 1] * lambda; } difA = (copy[copy.Length - 1] - new MyVec(target.position.x, target.position.y, target.position.z)).magnitude; } } // Update original joint rotations for (int i = 0; i < joints.Length - 1; i++) { //TODO MyVec A = new MyVec(joints[i + 1].position - joints[i].position); MyVec B = copy[i + 1] - copy[i]; float cosa = MyVec.Dot(MyVec.Normalize(A), MyVec.Normalize(B)); float sina = MyVec.Cross(MyVec.Normalize(A), MyVec.Normalize(B)).magnitude; float alpha = Mathf.Atan2(sina, cosa) * Mathf.Rad2Deg; MyVec myAxis = MyVec.Normalize(MyVec.Cross(A, B)); //Vector3 axis = new Vector3(myAxis.x, myAxis.y, myAxis.z); MyQuat myQuat = MyQuat.AngleAxis(alpha, ref myAxis); Quaternion quat = new Quaternion(myQuat.x, myQuat.y, myQuat.z, myQuat.w); joints[i].rotation = quat * joints[i].rotation; //joints[i].rotation = Quaternion.AngleAxis(alpha, axis) * joints[i].rotation; joints[i + 1].position = new Vector3(copy[i + 1].x, copy[i + 1].y, copy[i + 1].z); if (i == 2) { // print(joints[i].rotation.z); } if ((joints[i].rotation.z > 0.5f || joints[i].rotation.z < -0.5f) && i > 0) { joints[i].rotation = joints[i - 1].rotation; //joints[i].rotation = new Quaternion(joints[i].rotation.x, joints[i].rotation.y, , joints[i - 1].rotation.w); } } } }