public Sequential(Layer[] layers = null, string name = "", Context context = null, string kvstore = "device") : base(name, context, kvstore) { if (string.IsNullOrWhiteSpace(name)) { var prefix = this.GetType().Name.ToLower(); this.name = prefix + "_" + K.GetUid(prefix).ToString(); } this.batch_input_shape = null; // Add to the model any layers passed to the constructor. if (layers != null) { foreach (var layer in layers) { this.Add(layer); } } }
public InputLayer( Shape input_shape = null, int?batch_size = null, Shape batch_input_shape = null, DType dtype = null, KerasSymbol input_tensor = null, bool sparse = false, string name = null) { if (name != null) { var prefix = "input"; name = prefix + "_" + K.GetUid(prefix).ToString(); } this.trainable = false; this.built = true; this.sparse = sparse; this.supports_masking = true; if (input_shape != null && batch_input_shape != null) { throw new Exception("Only provide the input_shape OR batch_input_shape argument to InputLayer, not both at the same time."); } if (input_tensor != null && batch_input_shape == null) { // If input_tensor is set, and batch_input_shape is not set: // Attempt automatic input shape inference. try { batch_input_shape = input_tensor.Shape; } catch (Exception) { if (input_shape == null && batch_input_shape == null) { throw new Exception("InputLayer was provided an input_tensor argument, but its input shape cannot be automatically inferred. You should pass an input_shape or batch_input_shape argument."); } } } if (batch_input_shape == null) { if (input_shape == null) { throw new Exception("An Input layer should be passed either a `batch_input_shape` or an `input_shape`."); } else { var batchShapeData = input_shape.Data.ToList(); batchShapeData.Insert(0, batch_size.Value); batch_input_shape = new Shape(batchShapeData); } } else { batch_input_shape = new Shape(batch_input_shape); } if (dtype == null) { if (input_tensor == null) { dtype = K.FloatX(); } else { dtype = K.DataType(input_tensor); } } this.batch_input_shape = batch_input_shape; this.dtype = dtype; if (input_tensor == null) { this.is_placeholder = true; input_tensor = K.Placeholder(shape: batch_input_shape, dtype: dtype, sparse: this.sparse, name: this.name); } else { this.is_placeholder = false; input_tensor._keras_shape = batch_input_shape; } // Create an input node to add to this.outbound_node // and set output_tensors' _keras_history. input_tensor._uses_learning_phase = false; input_tensor._keras_history = (this, 0, 0); var node = new Node(this, inbound_layers: new Layer[0], node_indices: new int[0], tensor_indices: new int[0], input_tensors: new KerasSymbol[] { input_tensor }, output_tensors: new KerasSymbol[] { input_tensor }, input_masks: new KerasSymbol[] { null }, output_masks: new KerasSymbol[] { null }, input_shapes: new Shape[] { batch_input_shape }, output_shapes: new Shape[] { batch_input_shape } ); }