private static void TestPredictSparseSVM() { Console.WriteLine("Downloading dataset"); var news20 = new Accord.DataSets.News20(@"C:\Temp\"); Sparse <double>[] inputs = news20.Training.Item1; int[] outputs = news20.Training.Item2.ToMulticlass(); var learn = new MultilabelSupportVectorLearning <Linear, Sparse <double> >() { // using LIBLINEAR's L2-loss SVC dual for each SVM Learner = (p) => new LinearDualCoordinateDescent <Linear, Sparse <double> >() { Loss = Loss.L2, Complexity = 1.0, Tolerance = 1e-4 } }; Console.WriteLine("Learning"); Stopwatch sw = Stopwatch.StartNew(); var svm = learn.Learn(inputs.Get(0, 100), outputs.Get(0, 100)); Console.WriteLine(sw.Elapsed); Console.WriteLine("Predicting"); sw = Stopwatch.StartNew(); int[] predicted = svm.ToMulticlass().Decide(inputs); Console.WriteLine(sw.Elapsed); }
public void no_samples_for_class() { double[][] inputs = { new double[] { 1, 1 }, // 0 new double[] { 1, 1 }, // 0 new double[] { 1, 1 }, // 2 }; int[] outputs = { 0, 0, 2 }; var teacher = new MultilabelSupportVectorLearning <Gaussian>() { Learner = (param) => new SequentialMinimalOptimization <Gaussian>() { UseKernelEstimation = true } }; Assert.Throws <ArgumentException>(() => teacher.Learn(inputs, outputs), "There are no samples for class label {0}. Please make sure that class " + "labels are contiguous and there is at least one training sample for each label.", 1); }
private static void TestSMO() { Console.WriteLine("Downloading dataset"); var news20 = new Accord.DataSets.News20(@"C:\Temp\"); Sparse <double>[] inputs = news20.Training.Item1.Get(0, 2000); int[] outputs = news20.Training.Item2.ToMulticlass().Get(0, 2000); var learn = new MultilabelSupportVectorLearning <Linear, Sparse <double> >() { // using LIBLINEAR's SVC dual for each SVM Learner = (p) => new SequentialMinimalOptimization <Linear, Sparse <double> >() { Strategy = SelectionStrategy.SecondOrder, Complexity = 1.0, Tolerance = 1e-4, CacheSize = 1000 }, }; Console.WriteLine("Learning"); Stopwatch sw = Stopwatch.StartNew(); var svm = learn.Learn(inputs, outputs); Console.WriteLine(sw.Elapsed); Console.WriteLine("Predicting"); sw = Stopwatch.StartNew(); int[] predicted = svm.ToMulticlass().Decide(inputs); Console.WriteLine(sw.Elapsed); var test = new ConfusionMatrix(predicted, outputs); Console.WriteLine("Test acc: " + test.Accuracy); }
public void multilabel_linear_new_usage() { #region doc_learn_ldcd // Let's say we have the following data to be classified // into three possible classes. Those are the samples: // double[][] inputs = { // input output new double[] { 0, 1, 1, 0 }, // 0 new double[] { 0, 1, 0, 0 }, // 0 new double[] { 0, 0, 1, 0 }, // 0 new double[] { 0, 1, 1, 0 }, // 0 new double[] { 0, 1, 0, 0 }, // 0 new double[] { 1, 0, 0, 0 }, // 1 new double[] { 1, 0, 0, 0 }, // 1 new double[] { 1, 0, 0, 1 }, // 1 new double[] { 0, 0, 0, 1 }, // 1 new double[] { 0, 0, 0, 1 }, // 1 new double[] { 1, 1, 1, 1 }, // 2 new double[] { 1, 0, 1, 1 }, // 2 new double[] { 1, 1, 0, 1 }, // 2 new double[] { 0, 1, 1, 1 }, // 2 new double[] { 1, 1, 1, 1 }, // 2 }; int[] outputs = // those are the class labels { 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, }; // Create a one-vs-one multi-class SVM learning algorithm var teacher = new MultilabelSupportVectorLearning <Linear>() { // using LIBLINEAR's L2-loss SVC dual for each SVM Learner = (p) => new LinearDualCoordinateDescent() { Loss = Loss.L2 } }; // The following line is only needed to ensure reproducible results. Please remove it to enable full parallelization teacher.ParallelOptions.MaxDegreeOfParallelism = 1; // (Remove, comment, or change this line to enable full parallelism) // Learn a machine var machine = teacher.Learn(inputs, outputs); // Obtain class predictions for each sample bool[][] predicted = machine.Decide(inputs); // Compute classification error using mean accuracy (mAcc) double error = new HammingLoss(outputs).Loss(predicted); #endregion Assert.AreEqual(0, error); Assert.IsTrue(predicted.ArgMax(dimension: 1).IsEqual(outputs)); }
public void learn_linear_multilabel() { #region doc_learn_multilabel // In this example, we will learn a multi-class SVM using the one-vs-rest (OvR) // approach. The OvR approacbh can decompose decision problems involving multiple // classes into a series of binary ones, which can then be solved using SVMs. // Ensure we have reproducible results Accord.Math.Random.Generator.Seed = 0; // We will try to learn a classifier // for the Fisher Iris Flower dataset var iris = new Iris(); double[][] inputs = iris.Instances; // get the flower characteristics int[] outputs = iris.ClassLabels; // get the expected flower classes // We will use mini-batches of size 32 to learn a SVM using SGD var batches = MiniBatches.Create(batchSize: 32, maxIterations: 1000, shuffle: ShuffleMethod.EveryEpoch, input: inputs, output: outputs); // Now, we can create a multi-label teaching algorithm for the SVMs var teacher = new MultilabelSupportVectorLearning <Linear, double[]> { // We will use SGD to learn each of the binary problems in the multi-class problem Learner = (p) => new StochasticGradientDescent <Linear, double[], LogisticLoss>() { LearningRate = 1e-3, MaxIterations = 1 // so the gradient is only updated once after each mini-batch } }; // The following line is only needed to ensure reproducible results. Please remove it to enable full parallelization teacher.ParallelOptions.MaxDegreeOfParallelism = 1; // (Remove, comment, or change this line to enable full parallelism) // Now, we can start training the model on mini-batches: foreach (var batch in batches) { teacher.Learn(batch.Inputs, batch.Outputs); } // Get the final model: var svm = teacher.Model; // Now, we should be able to use the model to predict // the classes of all flowers in Fisher's Iris dataset: int[] prediction = svm.ToMulticlass().Decide(inputs); // And from those predictions, we can compute the model accuracy: var cm = new GeneralConfusionMatrix(expected: outputs, predicted: prediction); double accuracy = cm.Accuracy; // should be approximately 0.913 #endregion Assert.AreEqual(0.91333333333333333, cm.Accuracy); Assert.AreEqual(150, batches.NumberOfSamples); Assert.AreEqual(32, batches.MiniBatchSize); Assert.AreEqual(213, batches.CurrentEpoch); Assert.AreEqual(1001, batches.CurrentIteration); Assert.AreEqual(82, batches.CurrentSample); }
public MultilabelSupportVectorMachine <Linear> Teach(double[][] inputs, int[] outputs) { var teacher = new MultilabelSupportVectorLearning <Linear>() { Learner = (p) => new LinearDualCoordinateDescent() { Loss = Loss.L2 } }; return(teacher.Learn(inputs, outputs)); }
public void multilabel_linear_smo_new_usage() { // Let's say we have the following data to be classified // into three possible classes. Those are the samples: // double[][] inputs = { // input output new double[] { 0, 1, 1, 0 }, // 0 new double[] { 0, 1, 0, 0 }, // 0 new double[] { 0, 0, 1, 0 }, // 0 new double[] { 0, 1, 1, 0 }, // 0 new double[] { 0, 1, 0, 0 }, // 0 new double[] { 1, 0, 0, 0 }, // 1 new double[] { 1, 0, 0, 0 }, // 1 new double[] { 1, 0, 0, 1 }, // 1 new double[] { 0, 0, 0, 1 }, // 1 new double[] { 0, 0, 0, 1 }, // 1 new double[] { 1, 1, 1, 1 }, // 2 new double[] { 1, 0, 1, 1 }, // 2 new double[] { 1, 1, 0, 1 }, // 2 new double[] { 0, 1, 1, 1 }, // 2 new double[] { 1, 1, 1, 1 }, // 2 }; int[] outputs = // those are the class labels { 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, }; // Create a one-vs-one learning algorithm using LIBLINEAR's L2-loss SVC dual var teacher = new MultilabelSupportVectorLearning <Linear>(); teacher.Learner = (p) => new SequentialMinimalOptimization <Linear>() { UseComplexityHeuristic = true }; #if DEBUG teacher.ParallelOptions.MaxDegreeOfParallelism = 1; #endif // Learn a machine var machine = teacher.Learn(inputs, outputs); int[] actual = machine.Decide(inputs).ArgMax(dimension: 1); outputs[13] = 0; Assert.IsTrue(actual.IsEqual(outputs)); }
static void Main(string[] args) { double[][] inputs = { new double[] { 0 }, new double[] { 3 }, new double[] { 1 }, new double[] { 2 }, }; int[][] outputs = { new[] { -1, 1, -1 }, new[] { -1, -1, 1 }, new[] { 1, 1, -1 }, new[] { -1, -1, -1 } }; var teacher = new MultilabelSupportVectorLearning <Linear>() { Learner = (p) => new SequentialMinimalOptimization <Linear>() { Complexity = 10000.0 } }; var svm = teacher.Learn(inputs, outputs); double[][] results = svm.Probabilities(inputs); //double[][] results = new double[4][]; //for (int i = 0; i < results.Length; i++) // results[i] = new double[4]; //double[][] results2 = svm.Decide(inputs, results); int[] maxAnswers = svm.ToMulticlass().Decide(inputs); Console.ReadKey(); }
private static void multilabelSvm(double[][] inputs, int[] outputs) { // Create the multi-label learning algorithm as one-vs-rest var teacher = new MultilabelSupportVectorLearning <Linear>() { Learner = (p) => new SequentialMinimalOptimization <Linear>() { Complexity = 10000.0 // Create a hard SVM } }; // Learn a multi-label SVM using the teacher var svm = teacher.Learn(inputs, outputs); // Get the predictions for the inputs bool[][] predicted = svm.Decide(inputs); // Use the machine as if it were a multi-class machine // instead of a multi-label, identifying the strongest // class among the multi-label predictions: int[] classLabels = svm.ToMulticlass().Decide(inputs); }
private static void TestSparseSVMComplete() { #region doc_learn_news20 Console.WriteLine("Downloading dataset:"); var news20 = new Accord.DataSets.News20(@"C:\Temp\"); var trainInputs = news20.Training.Item1; var trainOutputs = news20.Training.Item2.ToMulticlass(); var testInputs = news20.Testing.Item1; var testOutputs = news20.Testing.Item2.ToMulticlass(); Console.WriteLine(" - Training samples: {0}", trainInputs.Rows()); Console.WriteLine(" - Testing samples: {0}", testInputs.Rows()); Console.WriteLine(" - Dimensions: {0}", trainInputs.Columns()); Console.WriteLine(" - Classes: {0}", trainOutputs.DistinctCount()); Console.WriteLine(); // Create and use the learning algorithm to train a sparse linear SVM var learn = new MultilabelSupportVectorLearning <Linear, Sparse <double> >() { // using LIBLINEAR's L2-loss SVC dual for each SVM Learner = (p) => new LinearDualCoordinateDescent <Linear, Sparse <double> >() { Loss = Loss.L2, Tolerance = 1e-4 }, }; // Display progress in the console learn.SubproblemFinished += (sender, e) => { Console.WriteLine(" - {0} / {1} ({2:00.0%})", e.Progress, e.Maximum, e.Progress / (double)e.Maximum); }; // Start the learning algorithm Console.WriteLine("Learning"); Stopwatch sw = Stopwatch.StartNew(); var svm = learn.Learn(trainInputs, trainOutputs); Console.WriteLine("Done in {0}", sw.Elapsed); Console.WriteLine(); // Compute accuracy in the training set Console.WriteLine("Predicting training set"); sw = Stopwatch.StartNew(); int[] trainPredicted = svm.ToMulticlass().Decide(trainInputs); Console.WriteLine("Done in {0}", sw.Elapsed); double trainError = new ZeroOneLoss(trainOutputs).Loss(trainPredicted); Console.WriteLine("Training error: {0}", trainError); Console.WriteLine(); // Compute accuracy in the testing set Console.WriteLine("Predicting testing set"); sw = Stopwatch.StartNew(); int[] testPredicted = svm.ToMulticlass().Decide(testInputs); Console.WriteLine("Done in {0}", sw.Elapsed); double testError = new ZeroOneLoss(testOutputs).Loss(testPredicted); Console.WriteLine("Testing error: {0}", testError); #endregion }
public void multilabel_calibration_generic_kernel() { // Let's say we have the following data to be classified // into three possible classes. Those are the samples: // double[][] inputs = { // input output new double[] { 0, 1, 1, 0 }, // 0 new double[] { 0, 1, 0, 0 }, // 0 new double[] { 0, 0, 1, 0 }, // 0 new double[] { 0, 1, 1, 0 }, // 0 new double[] { 0, 1, 0, 0 }, // 0 new double[] { 1, 0, 0, 1 }, // 1 new double[] { 0, 0, 0, 1 }, // 1 new double[] { 0, 0, 0, 1 }, // 1 new double[] { 1, 0, 1, 1 }, // 2 new double[] { 1, 1, 0, 1 }, // 2 new double[] { 0, 1, 1, 1 }, // 2 new double[] { 1, 1, 1, 1 }, // 2 }; int[] outputs = // those are the class labels { 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, }; // Create the multi-class learning algorithm for the machine var teacher = new MultilabelSupportVectorLearning <IKernel>() { // Configure the learning algorithm to use SMO to train the // underlying SVMs in each of the binary class subproblems. Learner = (param) => new SequentialMinimalOptimization <IKernel>() { UseKernelEstimation = false, Kernel = Gaussian.FromGamma(0.5) } }; // Learn a machine var machine = teacher.Learn(inputs, outputs); // Create the multi-class learning algorithm for the machine var calibration = new MultilabelSupportVectorLearning <IKernel>(machine) { // Configure the learning algorithm to use SMO to train the // underlying SVMs in each of the binary class subproblems. Learner = (p) => new ProbabilisticOutputCalibration <IKernel>(p.Model) }; // Configure parallel execution options calibration.ParallelOptions.MaxDegreeOfParallelism = 1; // Learn a machine calibration.Learn(inputs, outputs); // Obtain class predictions for each sample bool[][] predicted = machine.Decide(inputs); // Get class scores for each sample double[][] scores = machine.Scores(inputs); // Get log-likelihoods (should be same as scores) double[][] logl = machine.LogLikelihoods(inputs); // Get probability for each sample double[][] prob = machine.Probabilities(inputs); // Compute classification error using mean accuracy (mAcc) double error = new HammingLoss(outputs).Loss(predicted); double loss = new CategoryCrossEntropyLoss(outputs).Loss(prob); string a = scores.ToCSharp(); string b = logl.ToCSharp(); string c = prob.ToCSharp(); double[][] expectedScores = { new double[] { 1.85316017783605, -2.59688389729331, -2.32170102153988 }, new double[] { 1.84933597524124, -1.99399145231446, -2.2920299547693 }, new double[] { 1.44477953581274, -1.98592298465108, -2.27356092239125 }, new double[] { 1.85316017783605, -2.59688389729331, -2.32170102153988 }, new double[] { 1.84933597524124, -1.99399145231446, -2.2920299547693 }, new double[] { -2.40815576360914, 0.328362962196791, -0.932721757919691 }, new double[] { -2.13111157264226, 1.809192096031, -2.2920299547693 }, new double[] { -2.13111157264226, 1.809192096031, -2.2920299547693 }, new double[] { -2.14888646926108, -1.99399145231447, 1.33101148524982 }, new double[] { -2.12915064678299, -1.98592298465108, 1.3242171079396 }, new double[] { -1.47197826667149, -1.96368715704762, 0.843414180834243 }, new double[] { -2.14221021749314, -2.83117892529093, 2.61354519154994 } }; double[][] expectedLogL = { new double[] { -0.145606614365135, -2.66874434442222, -2.41528841111469 }, new double[] { -0.146125659911391, -2.12163759796483, -2.3883043096263 }, new double[] { -0.211716960454159, -2.11453945718522, -2.37154474995633 }, new double[] { -0.145606614365135, -2.66874434442222, -2.41528841111469 }, new double[] { -0.146125659911391, -2.12163759796483, -2.3883043096263 }, new double[] { -2.4943161092787, -0.542383360363463, -1.26452689970624 }, new double[] { -2.24328358118314, -0.151678833375872, -2.3883043096263 }, new double[] { -2.24328358118314, -0.151678833375872, -2.3883043096263 }, new double[] { -2.25918730624753, -2.12163759796483, -0.234447327588685 }, new double[] { -2.24153091066541, -2.11453945718522, -0.2358711195715 }, new double[] { -1.67856232802554, -2.0950136294762, -0.357841632335707 }, new double[] { -2.25321037906455, -2.88845047104229, -0.0707140798850236 } }; double[][] expectedProbs = { new double[] { 0.844913862516144, 0.0677684640174953, 0.0873176734663607 }, new double[] { 0.803266328757473, 0.111405242674824, 0.0853284285677024 }, new double[] { 0.790831391595502, 0.117950175028754, 0.0912184333757438 }, new double[] { 0.844913862516144, 0.0677684640174953, 0.0873176734663607 }, new double[] { 0.803266328757473, 0.111405242674824, 0.0853284285677024 }, new double[] { 0.0872387667998771, 0.614360294206236, 0.298400938993887 }, new double[] { 0.100372339295793, 0.812805149315815, 0.0868225113883914 }, new double[] { 0.100372339295793, 0.812805149315815, 0.0868225113883914 }, new double[] { 0.102863726210119, 0.11803188195247, 0.779104391837411 }, new double[] { 0.104532503226998, 0.118686968710368, 0.776780528062634 }, new double[] { 0.184996665350572, 0.121983586443407, 0.693019748206021 }, new double[] { 0.0961702585148881, 0.0509517983210315, 0.85287794316408 } }; int[] actual = predicted.ArgMax(dimension: 1); Assert.IsTrue(actual.IsEqual(outputs)); // Must be exactly the same as test above Assert.AreEqual(0, error); Assert.AreEqual(0.5, ((Gaussian)machine[0].Kernel).Gamma); Assert.AreEqual(0.5, ((Gaussian)machine[1].Kernel).Gamma); Assert.AreEqual(0.5, ((Gaussian)machine[2].Kernel).Gamma); Assert.AreEqual(2.9395943260892361, loss); Assert.IsTrue(expectedScores.IsEqual(scores, 1e-10)); Assert.IsTrue(expectedLogL.IsEqual(logl, 1e-10)); Assert.IsTrue(expectedProbs.IsEqual(prob, 1e-10)); double[] probabilities = CorrectProbabilities(machine, inputs[0]); double[] actualProb = machine.Probabilities(inputs[0]); Assert.IsTrue(probabilities.IsEqual(actualProb, 1e-8)); }
public void multilabel_calibration() { #region doc_learn_calibration // Let's say we have the following data to be classified // into three possible classes. Those are the samples: // double[][] inputs = { // input output new double[] { 0, 1, 1, 0 }, // 0 new double[] { 0, 1, 0, 0 }, // 0 new double[] { 0, 0, 1, 0 }, // 0 new double[] { 0, 1, 1, 0 }, // 0 new double[] { 0, 1, 0, 0 }, // 0 new double[] { 1, 0, 0, 1 }, // 1 new double[] { 0, 0, 0, 1 }, // 1 new double[] { 0, 0, 0, 1 }, // 1 new double[] { 1, 0, 1, 1 }, // 2 new double[] { 1, 1, 0, 1 }, // 2 new double[] { 0, 1, 1, 1 }, // 2 new double[] { 1, 1, 1, 1 }, // 2 }; int[] outputs = // those are the class labels { 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, }; // Create the multi-class learning algorithm for the machine var teacher = new MultilabelSupportVectorLearning <Gaussian>() { // Configure the learning algorithm to use SMO to train the // underlying SVMs in each of the binary class subproblems. Learner = (param) => new SequentialMinimalOptimization <Gaussian>() { // Estimate a suitable guess for the Gaussian kernel's parameters. // This estimate can serve as a starting point for a grid search. UseKernelEstimation = true } }; // Learn a machine var machine = teacher.Learn(inputs, outputs); // Create the multi-class learning algorithm for the machine var calibration = new MultilabelSupportVectorLearning <Gaussian>() { Model = machine, // We will start with an existing machine // Configure the learning algorithm to use SMO to train the // underlying SVMs in each of the binary class subproblems. Learner = (param) => new ProbabilisticOutputCalibration <Gaussian>() { Model = param.Model // Start with an existing machine } }; // Configure parallel execution options calibration.ParallelOptions.MaxDegreeOfParallelism = 1; // Learn a machine calibration.Learn(inputs, outputs); // Obtain class predictions for each sample bool[][] predicted = machine.Decide(inputs); // Get class scores for each sample double[][] scores = machine.Scores(inputs); // Get log-likelihoods (should be same as scores) double[][] logl = machine.LogLikelihoods(inputs); // Get probability for each sample double[][] prob = machine.Probabilities(inputs); // Compute classification error using mean accuracy (mAcc) double error = new HammingLoss(outputs).Loss(predicted); double loss = new CategoryCrossEntropyLoss(outputs).Loss(prob); #endregion string a = scores.ToCSharp(); string b = logl.ToCSharp(); string c = prob.ToCSharp(); double[][] expectedScores = { new double[] { 1.85316017783605, -2.59688389729331, -2.32170102153988 }, new double[] { 1.84933597524124, -1.99399145231446, -2.2920299547693 }, new double[] { 1.44477953581274, -1.98592298465108, -2.27356092239125 }, new double[] { 1.85316017783605, -2.59688389729331, -2.32170102153988 }, new double[] { 1.84933597524124, -1.99399145231446, -2.2920299547693 }, new double[] { -2.40815576360914, 0.328362962196791, -0.932721757919691 }, new double[] { -2.13111157264226, 1.809192096031, -2.2920299547693 }, new double[] { -2.13111157264226, 1.809192096031, -2.2920299547693 }, new double[] { -2.14888646926108, -1.99399145231447, 1.33101148524982 }, new double[] { -2.12915064678299, -1.98592298465108, 1.3242171079396 }, new double[] { -1.47197826667149, -1.96368715704762, 0.843414180834243 }, new double[] { -2.14221021749314, -2.83117892529093, 2.61354519154994 } }; double[][] expectedLogL = { new double[] { -0.145606614365135, -2.66874434442222, -2.41528841111469 }, new double[] { -0.146125659911391, -2.12163759796483, -2.3883043096263 }, new double[] { -0.211716960454159, -2.11453945718522, -2.37154474995633 }, new double[] { -0.145606614365135, -2.66874434442222, -2.41528841111469 }, new double[] { -0.146125659911391, -2.12163759796483, -2.3883043096263 }, new double[] { -2.4943161092787, -0.542383360363463, -1.26452689970624 }, new double[] { -2.24328358118314, -0.151678833375872, -2.3883043096263 }, new double[] { -2.24328358118314, -0.151678833375872, -2.3883043096263 }, new double[] { -2.25918730624753, -2.12163759796483, -0.234447327588685 }, new double[] { -2.24153091066541, -2.11453945718522, -0.2358711195715 }, new double[] { -1.67856232802554, -2.0950136294762, -0.357841632335707 }, new double[] { -2.25321037906455, -2.88845047104229, -0.0707140798850236 } }; double[][] expectedProbs = { new double[] { 0.844913862516144, 0.0677684640174953, 0.0873176734663607 }, new double[] { 0.803266328757473, 0.111405242674824, 0.0853284285677024 }, new double[] { 0.790831391595502, 0.117950175028754, 0.0912184333757438 }, new double[] { 0.844913862516144, 0.0677684640174953, 0.0873176734663607 }, new double[] { 0.803266328757473, 0.111405242674824, 0.0853284285677024 }, new double[] { 0.0872387667998771, 0.614360294206236, 0.298400938993887 }, new double[] { 0.100372339295793, 0.812805149315815, 0.0868225113883914 }, new double[] { 0.100372339295793, 0.812805149315815, 0.0868225113883914 }, new double[] { 0.102863726210119, 0.11803188195247, 0.779104391837411 }, new double[] { 0.104532503226998, 0.118686968710368, 0.776780528062634 }, new double[] { 0.184996665350572, 0.121983586443407, 0.693019748206021 }, new double[] { 0.0961702585148881, 0.0509517983210315, 0.85287794316408 } }; int[] actual = predicted.ArgMax(dimension: 1); Assert.IsTrue(actual.IsEqual(outputs)); Assert.AreEqual(0, error); Assert.AreEqual(3, machine.Count); Assert.AreEqual(0.5, machine[0].Kernel.Gamma); Assert.AreEqual(0.5, machine[1].Kernel.Gamma); Assert.AreEqual(0.5, machine[2].Kernel.Gamma); Assert.AreEqual(2.9395943260892361, loss); Assert.IsTrue(expectedScores.IsEqual(scores, 1e-10)); Assert.IsTrue(expectedLogL.IsEqual(logl, 1e-10)); Assert.IsTrue(expectedProbs.IsEqual(prob, 1e-10)); double[] rowSums = expectedProbs.Sum(1); Assert.IsTrue(rowSums.IsEqual(Vector.Ones(expectedProbs.Length), 1e-10)); { bool[][] predicted2 = null; double[][] scores2 = machine.Scores(inputs, ref predicted2); Assert.IsTrue(scores2.IsEqual(scores)); Assert.IsTrue(predicted2.IsEqual(predicted)); double[][] logl2 = machine.LogLikelihoods(inputs, ref predicted2); Assert.IsTrue(logl2.IsEqual(logl)); Assert.IsTrue(predicted2.IsEqual(predicted)); double[][] prob2 = machine.Probabilities(inputs, ref predicted2); Assert.IsTrue(prob2.IsEqual(prob)); Assert.IsTrue(predicted2.IsEqual(predicted)); bool[][] predicted3 = new bool[predicted2.Length][]; double[][] scores3 = inputs.ApplyWithIndex((x, i) => machine.Scores(x, ref predicted3[i])); Assert.IsTrue(scores3.IsEqual(scores)); Assert.IsTrue(predicted3.IsEqual(predicted)); double[][] logl3 = inputs.ApplyWithIndex((x, i) => machine.LogLikelihoods(x, ref predicted3[i])); Assert.IsTrue(logl3.IsEqual(logl)); Assert.IsTrue(predicted3.IsEqual(predicted)); double[][] prob3 = inputs.ApplyWithIndex((x, i) => machine.Probabilities(x, ref predicted3[i])); Assert.IsTrue(prob3.IsEqual(prob)); Assert.IsTrue(predicted3.IsEqual(predicted)); } { double[] ed = new double[scores.Length]; double[] es = new double[scores.Length]; double[] el = new double[scores.Length]; double[] ep = new double[scores.Length]; for (int i = 0; i < expectedScores.Length; i++) { int j = scores[i].ArgMax(); ed[i] = j; es[i] = scores[i][j]; el[i] = logl[i][j]; ep[i] = prob[i][j]; } int[] predicted2 = null; double[] scores2 = machine.ToMulticlass().Score(inputs, ref predicted2); Assert.IsTrue(scores2.IsEqual(es)); Assert.IsTrue(predicted2.IsEqual(ed)); double[] logl2 = machine.ToMulticlass().LogLikelihood(inputs, ref predicted2); Assert.IsTrue(logl2.IsEqual(el)); Assert.IsTrue(predicted2.IsEqual(ed)); double[] prob2 = machine.ToMulticlass().Probability(inputs, ref predicted2); Assert.IsTrue(prob2.IsEqual(ep)); Assert.IsTrue(predicted2.IsEqual(ed)); int[] predicted3 = new int[predicted2.Length]; double[] scores3 = inputs.ApplyWithIndex((x, i) => machine.ToMulticlass().Score(x, out predicted3[i])); Assert.IsTrue(scores3.IsEqual(es)); Assert.IsTrue(predicted3.IsEqual(ed)); double[] logl3 = inputs.ApplyWithIndex((x, i) => machine.ToMulticlass().LogLikelihood(x, out predicted3[i])); Assert.IsTrue(logl3.IsEqual(el)); Assert.IsTrue(predicted3.IsEqual(ed)); double[] prob3 = inputs.ApplyWithIndex((x, i) => machine.ToMulticlass().Probability(x, out predicted3[i])); Assert.IsTrue(prob3.IsEqual(ep)); Assert.IsTrue(predicted3.IsEqual(ed)); } }
public void multilabel_calibration_generic_kernel() { // Let's say we have the following data to be classified // into three possible classes. Those are the samples: // double[][] inputs = { // input output new double[] { 0, 1, 1, 0 }, // 0 new double[] { 0, 1, 0, 0 }, // 0 new double[] { 0, 0, 1, 0 }, // 0 new double[] { 0, 1, 1, 0 }, // 0 new double[] { 0, 1, 0, 0 }, // 0 new double[] { 1, 0, 0, 1 }, // 1 new double[] { 0, 0, 0, 1 }, // 1 new double[] { 0, 0, 0, 1 }, // 1 new double[] { 1, 0, 1, 1 }, // 2 new double[] { 1, 1, 0, 1 }, // 2 new double[] { 0, 1, 1, 1 }, // 2 new double[] { 1, 1, 1, 1 }, // 2 }; int[] outputs = // those are the class labels { 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, }; // Create the multi-class learning algorithm for the machine var teacher = new MultilabelSupportVectorLearning <IKernel>() { // Configure the learning algorithm to use SMO to train the // underlying SVMs in each of the binary class subproblems. Learner = (param) => new SequentialMinimalOptimization <IKernel>() { UseKernelEstimation = false, Kernel = Gaussian.FromGamma(0.5) } }; // Learn a machine var machine = teacher.Learn(inputs, outputs); // Create the multi-class learning algorithm for the machine var calibration = new MultilabelSupportVectorLearning <IKernel>(machine) { // Configure the learning algorithm to use SMO to train the // underlying SVMs in each of the binary class subproblems. Learner = (p) => new ProbabilisticOutputCalibration <IKernel>(p.Model) }; // Configure parallel execution options calibration.ParallelOptions.MaxDegreeOfParallelism = 1; // Learn a machine calibration.Learn(inputs, outputs); // Obtain class predictions for each sample bool[][] predicted = machine.Decide(inputs); // Get class scores for each sample double[][] scores = machine.Scores(inputs); // Get log-likelihoods (should be same as scores) double[][] logl = machine.LogLikelihoods(inputs); // Get probability for each sample double[][] prob = machine.Probabilities(inputs); // Compute classification error using mean accuracy (mAcc) double error = new HammingLoss(outputs).Loss(predicted); double loss = new CategoryCrossEntropyLoss(outputs).Loss(prob); string a = scores.ToCSharp(); string b = logl.ToCSharp(); string c = prob.ToCSharp(); double[][] expectedScores = { new double[] { 1.85316017783605, -2.59688389729331, -2.32170102153988 }, new double[] { 1.84933597524124, -1.99399145231446, -2.2920299547693 }, new double[] { 1.44477953581274, -1.98592298465108, -2.27356092239125 }, new double[] { 1.85316017783605, -2.59688389729331, -2.32170102153988 }, new double[] { 1.84933597524124, -1.99399145231446, -2.2920299547693 }, new double[] { -2.40815576360914, 0.328362962196791, -0.932721757919691 }, new double[] { -2.13111157264226, 1.809192096031, -2.2920299547693 }, new double[] { -2.13111157264226, 1.809192096031, -2.2920299547693 }, new double[] { -2.14888646926108, -1.99399145231447, 1.33101148524982 }, new double[] { -2.12915064678299, -1.98592298465108, 1.3242171079396 }, new double[] { -1.47197826667149, -1.96368715704762, 0.843414180834243 }, new double[] { -2.14221021749314, -2.83117892529093, 2.61354519154994 } }; double[][] expectedLogL = { new double[] { 1.85316017783605, -2.59688389729331, -2.32170102153988 }, new double[] { 1.84933597524124, -1.99399145231446, -2.2920299547693 }, new double[] { 1.44477953581274, -1.98592298465108, -2.27356092239125 }, new double[] { 1.85316017783605, -2.59688389729331, -2.32170102153988 }, new double[] { 1.84933597524124, -1.99399145231446, -2.2920299547693 }, new double[] { -2.40815576360914, 0.328362962196791, -0.932721757919691 }, new double[] { -2.13111157264226, 1.809192096031, -2.2920299547693 }, new double[] { -2.13111157264226, 1.809192096031, -2.2920299547693 }, new double[] { -2.14888646926108, -1.99399145231447, 1.33101148524982 }, new double[] { -2.12915064678299, -1.98592298465108, 1.3242171079396 }, new double[] { -1.47197826667149, -1.96368715704762, 0.843414180834243 }, new double[] { -2.14221021749314, -2.83117892529093, 2.61354519154994 } }; double[][] expectedProbs = { new double[] { 6.37994947365835, 0.0745053832890827, 0.0981065622139132 }, new double[] { 6.35559784678136, 0.136150899620619, 0.101061104020747 }, new double[] { 4.24091706941419, 0.137253872418087, 0.102944947658882 }, new double[] { 6.37994947365835, 0.0745053832890827, 0.0981065622139132 }, new double[] { 6.35559784678136, 0.136150899620619, 0.101061104020747 }, new double[] { 0.0899810880411361, 1.38869292386051, 0.393481290780948 }, new double[] { 0.118705270957796, 6.10551277113228, 0.101061104020747 }, new double[] { 0.118705270957796, 6.10551277113228, 0.101061104020747 }, new double[] { 0.116613938707895, 0.136150899620619, 3.78486979203385 }, new double[] { 0.118938271567046, 0.137253872418087, 3.75924112261421 }, new double[] { 0.229471080877097, 0.140340010119971, 2.3242889884131 }, new double[] { 0.11739508739354, 0.0589433229176013, 13.6473476521179 } }; int[] actual = predicted.ArgMax(dimension: 1); Assert.IsTrue(actual.IsEqual(outputs)); // Must be exactly the same as test above Assert.AreEqual(0, error); Assert.AreEqual(0.5, ((Gaussian)machine[0].Kernel).Gamma); Assert.AreEqual(0.5, ((Gaussian)machine[1].Kernel).Gamma); Assert.AreEqual(0.5, ((Gaussian)machine[2].Kernel).Gamma); Assert.AreEqual(-18.908706961799737, loss); Assert.IsTrue(expectedScores.IsEqual(scores, 1e-10)); Assert.IsTrue(expectedLogL.IsEqual(logl, 1e-10)); Assert.IsTrue(expectedProbs.IsEqual(prob, 1e-10)); }